6 research outputs found

    DGAT1 overexpression in muscle by in vivo DNA electroporation increases intramyocellular lipid content.

    Get PDF
    In adipose tissue, the microsomal enzyme 1,2-acyl CoA:diacylglyceroltransferase-1 (DGAT1) plays an important role in triglyceride storage. Because DGAT1 is expressed in skeletal muscle as well, we aimed to directly test the effect of DGAT1 on muscular triglyceride storage by overexpressing DGAT1 using in vivo DNA electroporation. A pcDNA3.1-DGAT1 construct in saline was injected in the left tibialis anterior muscle of rats, followed by the application of eight transcutaneous pulses, using the contralateral leg as sham-electroporated control. Electroporation of the DGAT1 construct led to significant overexpression of the DGAT1 protein. The functionality of DGAT1 overexpression is underscored by the pronounced diet-responsive increase in intramyocellular lipid (IMCL) storage. In chow-fed rats, DGAT1-positive myocytes showed significantly higher IMCL content compared with the control leg, which was almost devoid of IMCL (1.99 +/- 1.13% vs. 0.017 +/- 0.014% of total area fraction; P <0.05). High-fat feeding increased IMCL levels in both DGAT1-positive and control myocytes, resulting in very high IMCL levels in DGAT1-overexpressing myocytes (4.96 +/- 1.47% vs. 0.80 +/- 0.14%; P <0.05). Our findings indicate that DGAT1 contributes to the storage of IMCL and that in vivo DNA electroporation is a promising tool to examine the functional consequences of altered gene expression in mature skeletal muscle

    Improved glucose homeostasis in mice overexpressing human UCP3: a role for AMP-kinase?

    Get PDF
    OBJECTIVE: An unexplained phenotype of mice overexpressing human UCP3 is their improved glucose homeostasis. Since overexpression of UCP3 might affect the energy charge of the cell, we investigated whether these mice have an increased AMP-activated protein kinase (AMPK) activity. METHODS: Mitochondrial localisation of UCP3 was determined by immunoelectronmicroscopy and AMPK activity was measured in medial gastrocnemius of control mice and mice overexpressing human UCP3. RESULTS: Mice overexpressing human UCP3 had 5.8 fold higher levels of UCP3 protein, for which mitochondrial localisation was confirmed by immunoelectronmicroscopy. The ATP/AMP ratio was significantly lower in mice over-expressing UCP3 compared to the wild-type (10.9+/-1.6 vs 20.4+/-1.9 AU, P=0.03). Over-expression of UCP3 resulted in increased AMPK alpha1 activity (1.23+/-0.05 vs 1.00+/-0.06 normalized values, P=0.004) and a tendency towards increased AMPK alpha2 activity (1.18+/-0.08 vs 1.00+/-0.10 normalized values, P=0.08). CONCLUSION: Increased AMPK activity provides a plausible explanation for the improved glucose tolerance characteristic for these mice

    Mesenchymal Stem Cells, Immune Cells and Tumor Cells Crosstalk: A Sinister Triangle in the Tumor Microenvironment

    No full text

    Multiscale modelling of irradiation in nanostructures

    No full text
    corecore