9 research outputs found

    The transcription factor NF-Y participates to stem cell fate decision and regeneration in adult skeletal muscle

    Get PDF
    Satellite cells represent myogenic stem cells that allow the homeostasis and repair of adult skeletal muscle. Here the authors report that the transcription factor NF-Y is expressed in satellite cells and is important for their maintenance and proper myogenic differentiation

    Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients

    Get PDF
    Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes

    On the NF-Y regulome as in ENCODE (2019).

    No full text
    NF-Y is a trimeric Transcription Factor -TF- which binds with high selectivity to the conserved CCAAT element. Individual ChIP-seq analysis as well as ENCODE have progressively identified locations shared by other TFs. Here, we have analyzed data introduced by ENCODE over the last five years in K562, HeLa-S3 and GM12878, including several chromatin features, as well RNA-seq profiling of HeLa cells after NF-Y inactivation. We double the number of sequence-specific TFs and co-factors reported. We catalogue them in 4 classes based on co-association criteria, infer target genes categorizations, identify positional bias of binding sites and gene expression changes. Larger and novel co-associations emerge, specifically concerning subunits of repressive complexes as well as RNA-binding proteins. On the one hand, these data better define NF-Y association with single members of major classes of TFs, on the other, they suggest that it might have a wider role in the control of mRNA production

    NF-YA Overexpression in Lung Cancer: LUAD

    No full text
    The trimeric transcription factor (TF) NF-Y regulates the CCAAT box, a DNA element enriched in promoters of genes overexpressed in many types of cancer. The regulatory NF-YA is present in two major isoforms, NF-YAl (“long”) and NF-YAs (“short”). There is growing indication that NF-YA levels are increased in tumors. Here, we report interrogation of RNA-Seq TCGA (The Cancer Genome Atlas)—all 576 samples—and GEO (Gene Expression Ominibus) datasets of lung adenocarcinoma (LUAD). NF-YAs is overexpressed in the three subtypes, proliferative, inflammatory, and TRU (terminal respiratory unit). CCAAT is enriched in promoters of tumor differently expressed genes (DEG) and in the proliferative/inflammatory intersection, matching with KEGG (Kyoto Encyclopedia of Genes and Genomes) terms cell-cycle and signaling. Increasing levels of NF-YAs are observed from low to high CpG island methylator phenotypes (CIMP). We identified 166 genes overexpressed in LUAD cell lines with low NF-YAs/NF-YAl ratios: applying this centroid to TCGA samples faithfully predicted tumors’ isoform ratio. This signature lacks CCAAT in promoters. Finally, progression-free intervals and hazard ratios concurred with the worst prognosis of patients with either a low or high NF-YAs/NF-YAl ratio. In conclusion, global overexpression of NF-YAs is documented in LUAD and is associated with aggressive tumor behavior; however, a similar prognosis is recorded in tumors with high levels of NF-YAl and overexpressed CCAAT-less genes

    The NF-YA splicing signature controls aggressiveness of colon cancer by regulating different modes of cell migration and cell metabolism.

    No full text
    NF-Y is a transcription factor composed of NF-YA and NF-YB/NF-YC subunits. The two NF-YA isoforms, NF-YAs and NF-YAl, differentially control cell proliferation and differentiation. TCGA data highlight increased NF-YA expression, specifically NF-YAs, in colorectal cancer (CRC), the second most deadly cancer worldwide. Despite this, patients with high NF-YAl mRNA levels have a lower overall survival probability. We demonstrate that NF-YAl overexpression can generate a hybrid epithelial-mesenchymal transition (EMT) state in CRC cells by direct transcriptional regulation of key EMT genes. Consistently, NF-YAl enhances cell migration, both in 2D and 3D culture conditions, as highlighted by live imaging investigations. While collective migration characterizes NF-YAs-cells, fast single-cell and amoeboid-like migration marks NF-YAl cells. In agreement with these results, NF-YAl overexpression promotes cell dissemination in zebrafish xenografts. Since metabolic reprogramming is a hallmark of cancer and metastasis, we also investigated the role of NF-YAl in the metabolism of CRC cells. The measure of mitochondrial fuel usage in live cells showed that NF-YAl overexpression enhances the dependency and capacity for glutamine pathway, one of the key metabolic pathways involved in EMT and cell dissemination. Specifically, we identified NF-YAl as direct transcriptional regulator of GLS1 glutaminase and GLUL glutamine synthetase. Our observations imply that the two NF-YA variants can be potentially novel markers for CRC patient stratification. Higher NF-YAl expression can be a hallmark of cancer cell dissemination by affecting cell metabolism and cell migratory abilities

    Alternative splicing of the transcription factor NF-Y promotes cell migration and invasion in colon cancer

    No full text
    The heterotrimeric transcription factor NF-Y directly controls the expression of genes involved in cellular pathways commonly altered in cancer cells, such as cell cycle, apoptosis and metabolism. Consistently, the binding site for NF-Y is highly enriched in the regulatory regions of genes overexpressed in tumors, and mRNA levels of NF-Y subunits are altered in cancer tissues and cells. In particular, the DNA binding subunit NF-YA is up-regulated in various tumors, among which gastric, lung, breast, ovarian, osteosarcoma and prostate cancers. Moreover, a switch between the two alternatively NF-YA spliced transcripts, NF-YAs and NF-YAl, occurs in tumor tissues compared to normal ones. Colorectal cancer (CRC) is the third most common malignancy worldwide. Four internationally approved consensus molecular subtypes (CMS) represent the best current description of CRC heterogeneity at the gene-expression level: the CMS1 group is characterized by the immune infiltration signature, CMS2 is the canonical epithelial subtype, CMS3 represents the metabolic group, and CMS4 is the mesenchymal one, associated with a worse prognosis and poor response to therapies compared to other subtypes. Here we show that increased levels of NF-YA characterize CRC versus healthy tissues. We identified a significant association between NF-YA isoforms and CRC subtypes: NF-YAs is up-regulated in all CMSs in opposition to NF-YAl, which is down-regulated in all subtypes with the exception of aggressive and metastatic CMS4 group. By using in vitro cell models, we confirmed that NF-YAs is the predominant isoform in CRC cell lines, while NF-YAl levels proportionally increase from epithelial to hybrid and mesenchymal cells. The modulation of NF-YA isoforms in CRC cells significantly affects cancer cell behavior by modulating differently, even oppositely, the transcription of genes associated to extracellular-matrix (ECM) and epithelial-to-mesenchymal transition (EMT). We described different modes of migration and invasion properties for NF-YAs and NF-YAl overexpressing cells by using 2D and 3D culture conditions, time-lapse imaging of CRC cells and intravascular distribution of NF-YAs/l transduced CRC cells in the embryonic zebrafish xenograft model. Altogether, our data highlight the direct role of the longer NF-YA isoform in CRC cell dissemination and suggest its possible use as biomarker for molecular stratification predictive of progressive disease in CRC patients

    The NF-YA Splicing Signature Controls Aggressiveness of Colon Cancer by Regulating Cell Metabolism and Different Types of Cell Migration

    No full text
    NF-Y is a transcription factor composed of NF-YA and NF-YB/NF-YC subunits. The two NF-Y isoforms, NFYAs and NF-YAl, differentially control cell proliferation and differentiation. The analysis of patient’s transcriptome profiles from The Cancer Genome Atlas database highlight increased NF-YA expression, specifically NF-YAs, in colorectal cancer (CRC), the second most deadly cancer worldwide. Despite this, patients with high NF-YAl mRNA have a lower overall survival probability. We investigated the role of NF-YA in the metabolism of CRC cells, and the measurement of mitochondrial fuel usage in live cells shows that NF-YAl overexpression enhances the capacity for glutamine pathway, one of the key metabolic pathways involved in EMT and cell dissemination. Specifically, we identified NF-YAl as direct transcriptional regulator of GLS1 glutaminase and GLUL glutamine synthetase. Moreover, we demonstrate that NF-YAl overexpression can generate a hybrid epithelial-mesenchymal transition (EMT) state in CRC cells by direct transcriptional regulation of key EMT, extracellular matrix and adhesion genes. Consistently, NF-YAl enhances cell migration, both in 2D and 3D culture conditions, as highlighted by live imaging investigations. While collective migration characterizes NFYAs-cells, fast single-cell and amoeboid-like migration marks NF-YAl cells. In agreement with these results, NF-YAl overexpression promotes cell dissemination in zebrafish xenografts. Our observations imply that the two NF-YA variants can be potentially novel markers for CRC patients’ stratification. Higher NF-YAl expression can be a hallmark of cancer cell dissemination by affecting cell metabolism and cell migratory abilities

    The NF-Y splicing signature controls hybrid EMT and ECM-related pathways to promote aggressiveness of colon cancer

    No full text
    : Aberrant splicing events are associated with colorectal cancer (CRC) and provide new opportunities for tumor diagnosis and treatment. The expression of the splice variants of NF-YA, the DNA binding subunit of the transcription factor NF-Y, is deregulated in multiple cancer types compared to healthy tissues. NF-YAs and NF-YAl isoforms differ in the transactivation domain, which may result in distinct transcriptional programs. In this study, we demonstrated that the NF-YAl transcript is higher in aggressive mesenchymal CRCs and predicts shorter patients' survival. In 2D and 3D conditions, CRC cells overexpressing NF-YAl (NF-YAlhigh) exhibit reduced cell proliferation, rapid single cell amoeboid-like migration, and form irregular spheroids with poor cell-to-cell adhesion. Compared to NF-YAshigh, NF-YAlhigh cells show changes in the transcription of genes involved in epithelial-mesenchymal transition, extracellular matrix and cell adhesion. NF-YAl and NF-YAs bind similarly to the promoter of the E-cadherin gene, but oppositely regulate its transcription. The increased metastatic potential of NF-YAlhigh cells in vivo was confirmed in zebrafish xenografts. These results suggest that the NF-YAl splice variant could be a new CRC prognostic factor and that splice-switching strategies may reduce metastatic CRC progression
    corecore