66 research outputs found

    Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion Model

    Full text link
    Model inversion attacks (MIAs) are aimed at recovering private data from a target model's training set, which poses a threat to the privacy of deep learning models. MIAs primarily focus on the white-box scenario where the attacker has full access to the structure and parameters of the target model. However, practical applications are black-box, it is not easy for adversaries to obtain model-related parameters, and various models only output predicted labels. Existing black-box MIAs primarily focused on designing the optimization strategy, and the generative model is only migrated from the GAN used in white-box MIA. Our research is the pioneering study of feasible attack models in label-only black-box scenarios, to the best of our knowledge. In this paper, we develop a novel method of MIA using the conditional diffusion model to recover the precise sample of the target without any extra optimization, as long as the target model outputs the label. Two primary techniques are introduced to execute the attack. Firstly, select an auxiliary dataset that is relevant to the target model task, and the labels predicted by the target model are used as conditions to guide the training process. Secondly, target labels and random standard normally distributed noise are input into the trained conditional diffusion model, generating target samples with pre-defined guidance strength. We then filter out the most robust and representative samples. Furthermore, we propose for the first time to use Learned Perceptual Image Patch Similarity (LPIPS) as one of the evaluation metrics for MIA, with systematic quantitative and qualitative evaluation in terms of attack accuracy, realism, and similarity. Experimental results show that this method can generate similar and accurate data to the target without optimization and outperforms generators of previous approaches in the label-only scenario.Comment: 11 pages, 6 figures, 2 table

    UAV Swarm-Enabled Localization in Isolated Region: A Rigidity-constrained Deployment Perspective

    Get PDF

    Hierarchical Multi-Agent Optimization for Resource Allocation in Cloud Computing

    Get PDF
    In cloud computing, an important concern is to allocate the available resources of service nodes to the requested tasks on demand and to make the objective function optimum, i.e., maximizing resource utilization, payoffs and available bandwidth. This paper proposes a hierarchical multi-agent optimization (HMAO) algorithm in order to maximize the resource utilization and make the bandwidth cost minimum for cloud computing. The proposed HMAO algorithm is a combination of the genetic algorithm (GA) and the multi-agent optimization (MAO) algorithm. With maximizing the resource utilization, an improved GA is implemented to find a set of service nodes that are used to deploy the requested tasks. A decentralized-based MAO algorithm is presented to minimize the bandwidth cost. We study the effect of key parameters of the HMAO algorithm by the Taguchi method and evaluate the performance results. When compared with genetic algorithm (GA) and fast elitist non-dominated sorting genetic (NSGA-II) algorithm, the simulation results demonstrate that the HMAO algorithm is more effective than the existing solutions to solve the problem of resource allocation with a large number of the requested tasks. Furthermore, we provide the performance comparison of the HMAO algorithm with the first-fit greedy approach in on-line resource allocation

    Novel distributed beamforming algorithms for heterogeneous space terrestrial integrated network

    Get PDF
    • …
    corecore