66 research outputs found

    The Role of Congestion in Cardiorenal Syndrome Type 2: New Pathophysiological Insights into an Experimental Model of Heart Failure

    Get PDF
    BACKGROUND: In cardiorenal syndrome type 2 (CRS2), the role of systemic congestion in heart failure (HF) is still obscure. We studied a model of CRS2 [monocrotaline (MCT)-treated rats] secondary to pulmonary hypertension and right ventricular (RV) failure in order to evaluate the contribution of prevalent congestion to the development of kidney injury. METHODS: Ten animals were treated with MCT for 4 weeks until they developed HF. Eleven animals were taken as controls. Signs of hypertrophy and dilatation of the right ventricle demonstrated the occurrence of HF. Brain natriuretic peptide (BNP), serum creatinine (sCreatinine), both kidney and heart neutrophil gelatinase-associated lipocalin (NGAL), matrix metallopeptidase 9 (MMP9), serum cytokines as well as kidney and heart cell death, as assessed by TUNEL, were studied. RESULTS: Rats with HF showed higher BNP levels [chronic HF (CHF) 4.8 ± 0.5 ng/ml; controls 1.5 ± 0.2 ng/ml; p < 0.0001], marked RV hypertrophy and dilatation (RV mass/RV volume: CHF 1.46 ± 0.31, controls 2.41 ± 0.81; p < 0.01) as well as pleural and peritoneal effusions. A significant increase in proinflammatory cytokines and sCreatinine was observed (CHF 3.06 ± 1.3 pg/ml vs. controls 0.54 ± 0.23 pg/ml; p = 0.04). Serum (CHF 562.7 ± 93.34 ng/ml vs. controls 245.3 ± 58.19 ng/ml; p = 0.02) as well as renal and heart tissue NGAL levels [CHF 70,680 ± 4,337 arbitrary units (AU) vs. controls 32,120 ± 4,961 AU; p = 0.001] rose significantly, and they were found to be complexed with MMP9 in CHF rats. A higher number of kidney TUNEL-positive tubular cells was also detected (CHF 114.01 ± 45.93 vs. controls 16.36 ± 11.60 cells/mm(2); p = 0.0004). CONCLUSION: In this model of CHF with prevalent congestion, kidney injury is characterized by tubular damage and systemic inflammation. The upregulated NGAL complexed with MMP9 perpetuates the vicious circle of kidney/heart damage by enhancing the enzymatic activity of MMP9 with extracellular matrix degradation, worsening heart remodeling

    Both Monoclonal and Polyclonal Immunoglobulin Contingents Mediate Complement Activation in Monoclonal Gammopathy Associated-C3 Glomerulopathy

    Get PDF
    C3 glomerulopathy (C3G) results from acquired or genetic abnormalities in the complement alternative pathway (AP). C3G with monoclonal immunoglobulin (MIg-C3G) was recently included in the spectrum of “monoclonal gammopathy of renal significance.” However, mechanisms of complement dysregulation in MIg-C3G are not described and the pathogenic effect of the monoclonal immunoglobulin is not understood. The purpose of this study was to investigate the mechanisms of complement dysregulation in a cohort of 41 patients with MIg-C3G. Low C3 level and elevated sC5b-9, both biomarkers of C3 and C5 convertase activation, were present in 44 and 78% of patients, respectively. Rare pathogenic variants were identified in 2/28 (7%) tested patients suggesting that the disease is acquired in a large majority of patients. Anti-complement auto-antibodies were found in 20/41 (49%) patients, including anti-FH (17%), anti-CR1 (27%), anti-FI (5%) auto-antibodies, and C3 Nephritic Factor (7%) and were polyclonal in 77% of patients. Using cofactor assay, the regulation of the AP was altered in presence of purified IgG from 3/9 and 4/7 patients with anti-FH or anti-CR1 antibodies respectively. By using fluid and solid phase AP activation, we showed that total purified IgG of 22/34 (65%) MIg-C3G patients were able to enhance C3 convertase activity. In five documented cases, we showed that the C3 convertase enhancement was mostly due to the monoclonal immunoglobulin, thus paving the way for a new mechanism of complement dysregulation in C3G. All together the results highlight the contribution of both polyclonal and monoclonal Ig in MIg-C3G. They provide direct insights to treatment approaches and opened up a potential way to a personalized therapeutic strategy based on chemotherapy adapted to the B cell clone or immunosuppressive therapy

    ERK1/2 phosphorylation is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia

    Get PDF
    Abstract Extracellular signal-regulated kinase-1/2 (ERK1/2) is frequently found constitutively activated (p-ERK1/2) in hematopoietic diseases, suggesting a role in leukemogenesis. The aim of this study was to assess the expression and clinical role of p-ERK1/2 in adult acute lymphoblastic leukemia (ALL). In 131 primary samples from adult de novo ALL patients enrolled in the Gruppo Italiano per le Malattie Ematologiche dell'Adulto (GIMEMA) Leucemia Acute Linfoide (LAL) 2000 protocol and evaluated by flow cytometry, constitutive ERK1/2 activation was found in 34.5% of cases; these results were significantly associated with higher white blood cell (WBC) values (P = .013). In a multivariate analysis, p-ERK1/2 expression was an independent predictor of complete remission achievement (P = .027). Effective approaches toward MEK inhibition need to be explored in order to evaluate whether this may represent a new therapeutic strategy for adult ALL patients

    Adipose Tissue Immune Response: Novel Triggers and Consequences for Chronic Inflammatory Conditions

    Get PDF

    Validation of numerical D.E.M. modelling of geogrid reinforced embankments for rockfall protection

    Get PDF
    The adoption of reinforced embankments for rockfall and landslide protection purposes is an effective intervention for the reduction of risk and damages to civil facilities. These earth structures are manufactured with layers of compacted soil alternated with geosynthetics (e.g. geogrids and geotextiles) that are anchored to the outer quarterdeck frame or wrapped around it. This paper discusses the results obtained with a numerical simulation of the reinforced embankment carried out by means of a distinct element commercial (D.E.M.) code as particle code (P.F.C.). Several types of rock impacts on an embankment were simulated, varying block speeds, energies and geometrical impact conditions. Data from practical experiences of the authors and data from full-scale impact tests gathered from relevant literature, were used for the validation of the model. The main result of the work is the development of design operative suggestions that can support the selection of the design parameters of an embankment for rockfall protection purposes: its preliminary size based on impact energy level and induced damages can be outlined. The results of this provide guidance to designers and relevant stakeholders in the evaluation of risk scenarios arising from potential rock falls on infrastructures
    • …
    corecore