66 research outputs found
Measurement of radon-induced backgrounds in the NEXT double beta decay experiment
The measurement of the internal Rn activity in the NEXT-White
detector during the so-called Run-II period with Xe-depleted xenon is
discussed in detail, together with its implications for double beta decay
searches in NEXT. The activity is measured through the alpha production rate
induced in the fiducial volume by Rn and its alpha-emitting progeny.
The specific activity is measured to be ~mBq/m. Radon-induced electrons have also been
characterized from the decay of the Bi daughter ions plating out on the
cathode of the time projection chamber. From our studies, we conclude that
radon-induced backgrounds are sufficiently low to enable a successful NEXT-100
physics program, as the projected rate contribution should not exceed
0.1~counts/yr in the neutrinoless double beta decay sample.Comment: 28 pages, 10 figures, 6 tables. Version accepted for publication in
JHE
Measurement of the scintillation resolution in liquid xenon and its impact for future segmented calorimeters
We report on a new measurement of the energy resolution that can be attained
in liquid xenon when recording only the scintillation light. Our setup is
optimised to maximise light collection, and uses state-of-the-art, high-PDE,
VUV-sensitive silicon photomultipliers. We find a value of 2.7% +- 0.3% FWHM at
511 keV, a result much better than previous measurements and very close to the
Poissonian resolution that we expect in our setup (3.0% +- 0.7% FWHM at 511
keV). Our results are compatible with a null value of the intrinsic energy
resolution in xenon, with an upper bound of 1.5% FWHM at 95% CL at 511 keV, to
be compared with 3--4% FWHM in the same region found by theoretical estimations
which have been standing for the last twenty years. Our work opens new
possibilities for apparatus based on liquid xenon and using scintillation only.
In particular it suggests that modular scintillation detectors using liquid
xenon can be very competitive as building blocks in segmented calorimeters,
with applications to nuclear and particle physics as well as Positron Emission
Tomography technology
Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector
[EN] New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.This work was supported by the European Research Council under grant ID 757829 and by Ministerio de Economia y Competitividad for grant FPA2016-78595-C3-1-R.Renner, J.; Romo-Luque, C.; Aliaga, RJ.; Álvarez-Puerta, V.; Ballester Merelo, FJ.; Benlloch-Rodríguez, J.; Carrión, J.... (2022). Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector. Journal of Instrumentation. 17(5):1-14. https://doi.org/10.1088/1748-0221/17/05/P0504411417
Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches
The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless
double-beta decay of Xe-136 using high-pressure xenon gas TPCs with
electroluminescent amplification. A scaled-up version of this technology with
about 1 tonne of enriched xenon could reach in less than 5 years of operation a
sensitivity to the half-life of neutrinoless double-beta decay decay better
than 1E27 years, improving the current limits by at least one order of
magnitude. This prediction is based on a well-understood background model
dominated by radiogenic sources. The detector concept presented here represents
a first step on a compelling path towards sensitivity to the parameter space
defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
Recommended from our members
Demonstration of the event identification capabilities of the NEXT-White detector
In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat± 0.3 sys% for a background acceptance of 20.6 ± 0.4 stat± 0.3 sys% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies. [Figure not available: see fulltext.
Recommended from our members
Radiogenic backgrounds in the NEXT double beta decay experiment
Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterráneo de Canfranc with xenon depleted in 136Xe are analyzed to derive a total background rate of (0.84±0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of 60Co, 40K, 214Bi and 208Tl to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25±0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5σ after 1 year of data taking. The background measurement in a Qββ±100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75±0.12) events. [Figure not available: see fulltext.]
Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield
High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]
Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe
Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches. [Figure not available: see fulltext.
- …