12 research outputs found

    Precise dissection of an Escherichia coli O157:H7 outbreak by single nucleotide polymorphism analysis

    Get PDF
    The current pathogen-typing methods have suboptimal sensitivities and specificities. DNA sequencing offers an opportunity to type pathogens with greater degrees of discrimination using single nucleotide polymorphisms (SNPs) than with pulsed-field gel electrophoresis (PFGE) and other methodologies. In a recent cluster of Escherichia coli O157:H7 infections attributed to salad bar exposures and romaine lettuce, a subset of cases denied exposure to either source, although PFGE and multiple-locus variable-number tandem-repeat analysis (MLVA) suggested that all isolates had the same recent progenitor. Interrogation of a preselected set of 3,442,673 nucleotides in backbone open reading frames (ORFs) identified only 1 or 2 single nucleotide differences in 3 of 12 isolates from the cases who denied exposure. The backbone DNAs of 9 of 9 and 3 of 3 cases who reported or were unsure about exposure, respectively, were isogenic. Backbone ORF SNP set sequencing offers pathogen differentiation capabilities that exceed those of PFGE and MLVA

    Diagnosis of Community-Acquired Pertussis Infection: Comparison of Both Culture and Fluorescent-Antibody Assays with PCR Detection Using Electrophoresis or Dot Blot Hybridization

    No full text
    Diagnosis of Bordetella pertussis infection has been difficult due to the low sensitivity of culture. PCR tests have been shown to be more sensitive than culture, but the reported sensitivity of PCR is variable. We evaluated PCR product detection by using either agarose gel electrophoresis (PCR-gel) or dot blot hybridization with (32)P-labeled oligonucleotide probes, and we compared these methods to both culture and direct fluorescent-antibody (DFA) assays with microscopy for the detection of pertussis. This was done with 225 nasopharyngeal swab specimens collected in community clinic settings. The multiplexed PCR amplified the multiply repeated IS481 B. pertussis sequence and a sequence from the human globin gene as a positive control for specimen adequacy. Of 225 specimens, 179 were judged to be adequate for PCR analysis. Among the adequate specimens, 9, 4, and 10 were culture, DFA, and PCR-gel positive, respectively. The sensitivity of PCR-gel versus culture was 89% while the sensitivity of culture versus PCR-gel was 80%. DFA had the lowest sensitivity. Thirty specimens were positive by PCR with dot blot hybridization; no negative control specimens showed a signal above the background. Among the 79 (44%) adequate specimens with clinical data available, the rates of reported cough or persistent cough were similar for persons who were pertussis positive by each assay. The IS481 PCR, with either electrophoresis or dot blot hybridization, is a sensitive assay; however, at this time it cannot completely replace culture without an overall loss in sensitivity for the detection of pertussis. Further study is required to understand the clinical significance of B. pertussis PCR products detected by dot blot hybridization alone

    CTX-M Extended-spectrum β-Lactamases, Washington State

    Get PDF

    Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses.

    No full text
    Free-living and parasitic protozoa are known to harbor a variety of endosymbiotic bacteria, although the roles such endosymbionts play in host survival, infectivity, and invasiveness are unclear. We have identified the presence of intracellular bacteria in 14 of 57 (24%) axenically grown Acanthamoeba isolates examined. These organisms are gram negative and non-acid fast, and they cannot be cultured by routine methodologies, although electron microscopy reveals evidence for multiplication within the amoebic cytoplasm. Examination for Legionella spp. with culture and nucleic acid probes has proven unsuccessful. We conclude that these bacteria are endosymbionts which have an obligate need to multiply within their amoebic hosts. Rod-shaped bacteria were identified in 5 of 23 clinical Acanthamoeba isolates (3 of 19 corneal isolates and 2 of 4 contact lens isolates), 4 of 25 environmental Acanthamoeba isolates, and 2 of 9 American Type Culture Collection Acanthamoeba isolates (ATCC 30868 and ATCC 30871) previously unrecognized as having endosymbionts. Coccus-shaped bacteria were present in one clinical (corneal) isolate and two environmental isolates. There was no statistical difference (P > 0.8) between the numbers of endosymbiont strains originating from clinical (26% positive) and environmental (24% positive) amoebic isolates, suggesting that the presence alone of these bacteria does not enhance amoebic infectivity. Rods and cocci were found in both clinical and environmental isolates from different geographical areas (Seattle, Wash., and Portland, Oreg.), demonstrating their widespread occurrence in nature. Our findings suggest that endosymbiosis occurs commonly among members of the family Acanthamoebidae and that the endosymbionts comprise a diverse taxonomic assemblage. The role such endosymbionts may play in pathogenesis remains unknown, although a variety of exogenous bacteria have been implicated in the development of amoebic keratitis, warranting further evaluation

    Multiplex PCR-Based Method for Identification of Common Clinical Serotypes of Salmonella enterica subsp. enterica

    No full text
    A multiplex PCR method has been developed to differentiate between the most common clinical serotypes of Salmonella enterica subsp. enterica encountered in Washington State and the United States in general. Six genetic loci from S. enterica serovar Typhimurium and four from S. enterica serovar Typhi were used to create an assay consisting of two five-plex PCRs. The assays gave reproducible results with 30 different serotypes that represent the most common clinical isolates of S. enterica subsp. enterica. Of these, 22 serotypes gave unique amplification patterns compared with each other and the other 8 serotypes were grouped into four pairs. These were further resolved by two additional PCRs. We compared the data from PCR serotyping with conventional serotyping and found that PCR serotyping was nearly as discriminatory as conventional serotyping was. The results from a blind test screening 111 clinical isolates revealed that 97% were correctly identified using the multiplex PCR assay. The assay can be easily performed on multiple samples with final results in less than 5 h and, in conjunction with pulsed-field gel electrophoresis, forms a very robust test method for the molecular subtyping of Salmonella enterica subsp. enterica

    Salmonellosis in the Republic of Georgia: Using Molecular Typing to Identify the Outbreak-Causing Strain

    Get PDF
    In May 1998, three large outbreaks of salmonellosis, affecting 91 persons, were identified in the Republic of Georgia. Eighteen Salmonella Typhimurium strains were characterized by arbitrary primed polymerase chain reaction and pulsed-field gel electrophoresis; the results suggested that all cases were part of a single outbreak caused by a distinct clonal strain

    Cryptic transmission of SARS-CoV-2 in Washington state

    No full text
    After its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States. We find that most SARS-CoV-2 infections sampled during this time derive from a single introduction in late January or early February 2020, which subsequently spread locally before active community surveillance was implemented
    corecore