16,784 research outputs found

    Amplification phenomena of Casimir force fluctuations on close scatterers coupled via a coherent fermionic fluid

    Full text link
    We study the mechanical actions affecting close scatterers immersed in a coherent fermionic fluid. Using a scattering field theory, we theoretically analyse the single-scatterer and the two-scatterer case. Concerning the single-scatterer case, we find that a net force affects the scatterer dynamics only in non-equilibrium condition, i.e. imposing the presence of a non-vanishing particle current flowing through the system. The force fluctuation (variance) is instead not negligible both in equilibrium and in non-equilibrium conditions. Concerning the two-scatterer case, an attractive fluid-mediated Casimir force is experienced by the scatterers at small spatial separation, while a decaying attractive/repulsive behavior as a function of the scatterer separation is found. Furthermore, the Casimir force fluctuations acting on a given scatterer in close vicinity of the other present an oscillating behavior reaching a long distance limit comparable to the value of the single-scatterer case. The relevance of these findings is discussed in connection with fluctuation phenomena in low-dimensional nanostructures and cold atoms systems.Comment: 10 pages; 6 figure

    Electrically Controlled Pumping of Spin Currents in Topological Insulators

    Full text link
    Pure spin currents are shown to be generated by an electrically controlled quantum pump applied at the edges of a topological insulator. The electric rather than the more conventional magnetic control offers several advantages and avoids, in particular, the necessity of delicate control of magnetization dynamics over tiny regions. The pump is implemented by pinching the sample at two quantum point contacts and phase modulating two external gate voltages between them. The spin current is generated for the full range of parameters. On the other hand, pumping via amplitude modulation of the inter-boundary couplings generates both charge and spin currents, with a pure charge current appearing only for special values of the parameters for which the Bohm-Aharonov flux takes integer values. Our setup can therefore serve to fingerprint the helical nature of the edges states with the zeros of the pumped spin and charge currents occurring at distinct universal locations where the Fabry-Perot or the Aharonov-Bohm phases take integer values.Comment: 5 pages, 5figure

    Impurity effects on Fabry-Perot physics of ballistic carbon nanotubes

    Full text link
    We present a theoretical model accounting for the anomalous Fabry-Perot pattern observed in the ballistic conductance of a single-wall carbon nanotubes. Using the scattering field theory, it is shown that the presence of a limited number of impurities along the nanotube can be identified by a measurement of the conductance and their position determined. Impurities can be made active or silent depending on the interaction with the substrate via the back-gate. The conceptual steps for designing a bio-molecules detector are briefly discussed.Comment: 4 pages, 4 figure

    Time Evolution of Non-Lethal Infectious Diseases: A Semi-Continuous Approach

    Full text link
    A model describing the dynamics related to the spreading of non-lethal infectious diseases in a fixed-size population is proposed. The model consists of a non-linear delay-differential equation describing the time evolution of the increment in the number of infectious individuals and depends upon a limited number of parameters. Predictions are in good qualitative agreement with data on influenza.Comment: 21 page

    Interaction effects in non-equilibrium transport properties of a four-terminal topological corner junction

    Full text link
    We study the transport properties of a four-terminal corner junction made by etching a two- dimensional topological insulator to form a quantum point contact (QPC). The QPC geometry enables inter-boundary tunneling processes allowing for the coupling among states with different helicity, while the tight confinement in the QPC region activates charging effects leading to the Coulomb blockade physics. Peculiar signatures of these effects are theoretically investigated using a scattering field theory modified to take into account the electron-electron interaction within a self- consistent mean-field approach. The current-voltage characteristics and the current fluctuations (noise) are derived beyond the linear response regime. Universal aspects of the thermal noise of the corner junction made of helical matter are also discussed.Comment: 13 pages, 8 figure

    Minimal model of point contact Andreev reflection spectroscopy of multiband superconductors

    Full text link
    We formulate a minimal model of point contact Andreev reflection spectroscopy of a normal- metal/multiband superconductor interface. The theory generalizes the Blonder-Tinkham-Klapwijk (BTK) formulation to a multiband superconductor and it is based on the quantum waveguides theory. The proposed approach allows an analytic evaluation of the Andreev and normal reflection coefficients and thus is suitable for a data fitting of point contact experiments. The obtained differential conductance curves present distinctive features similar to the ones measured in the experiments on multiband systems, like the iron-based pnictides and the MgB2.Comment: 5 pages, 4 figure

    Parasitic pumping currents in an interacting quantum dot

    Full text link
    We analyze the charge and spin pumping in an interacting dot within the almost adiabatic limit. By using a non-equilibrium Green's function technique within the time-dependent slave boson approximation, we analyze the pumped current in terms of the dynamical constraints in the infinite-U regime. The results show the presence of parasitic pumping currents due to the additional phases of the constraints. The behavior of the pumped current through the quantum dot is illustrated in the spin-insensitive and in the spin-sensitive case relevant for spintronics applications

    Quantum pumping in deformable quantum dots

    Full text link
    The charge current pumped adiabatically through a deformable quantum dot is studied within the Green's function approach. Differently from the non-deformable case, the current shows an undefined parity with respect to the pumping phase \phi. The unconventional current-phase relation, analyzed in the weak pumping regime, is due to a dynamical phase shift \phi_D caused by the elastic deformations of the central region (classical phonons). The role of the quality factor Q of the oscillator, the effects induced by a mechanical resonance and the implications for current experiments on molecular systems are also discussed

    Pumping in a mesoscopic ring with Ahronov-Casher effect

    Full text link
    We investigate parametric pumping of spin and charge currents in a mesoscopic ring interrupted by a tunnel barrier in presence of Aharonov-Casher (AC) effect and Aharonov-Bohm (AB) flux along the axis of the same ring. Generation of a dc current is achieved by tuning the tunnel barrier strength and modulating in time either a radial(transverse) electric field or the magnetic flux. A pure spin current is generated by the interplay of breaking spin reversal symmetry, due to AC effect, and time-reversal symmetry breaking, intrinsic in parametric pumping procedure. We analyze the conditions for operating the AB-AC ring as a pure spin pump useful in spintronics and discuss generalization of our results to Rashba-gate-controlled rings.Comment: PRB, to appea

    Hunting for heavy composite Majorana neutrinos at the LHC

    Get PDF
    We investigate the search for heavy Majorana neutrinos stemming from a composite model scenario at the upcoming LHC Run II at a center of mass energy of 13 TeV. While previous studies of the composite Majorana neutrino were focussed on gauge interactions via magnetic type transition coupling between ordinary and heavy fermions (with mass mm^*) here we complement the composite model with contact interactions at the energy scale Λ\Lambda and we find that the production cross sections are dominated by such contact interactions by roughly two/three orders of magnitude. This mechanism provides therefore very interesting rates at the prospected luminosities. We study the same sign di-lepton and di-jet signature (ppjjpp \to \ell\ell jj) and perform a fast detector simulation based on Delphes. We compute 3σ\sigma and 5σ\sigma contour plots of the statistical significance in the parameter space (Λ,m\Lambda,m^*). We find that the potentially excluded regions at s=13\sqrt{s} =13 TeV are quite larger than those excluded so far at Run I considering searches with other signatures.Comment: 14 pages, 9 figures, Minor comments and few references added. Version accepted by the European Physical Journal C (EPJC
    corecore