14,363 research outputs found
The effect of stellar migration on Galactic chemical evolution: a heuristic approach
In the last years, stellar migration in galactic discs has been the subject
of several investigations. However, its impact on the chemical evolution of the
Milky Way still needs to be fully quantified. In this paper, we aim at imposing
some constraints on the significance of this phenomenon by considering its
influence on the chemical evolution of the Milky Way thin disc. We do not
investigate the physical mechanisms underlying the migration of stars. Rather,
we introduce a simple, heuristic treatment of stellar migration in a detailed
chemical evolution model for the thin disc of the Milky Way, which already
includes radial gas flows and reproduces several observational constraints for
the solar vicinity and the whole Galactic disc. When stellar migration is
implemented according to the results of chemo-dynamical simulations by Minchev
et. al. (2013) and finite stellar velocities of 1 km s are taken into
account, the high-metallicity tail of the metallicity distribution function of
long-lived thin-disc stars is well reproduced. By exploring the velocity space,
we find that the migrating stars must travel with velocities in the range 0.5
-2 km s to properly reproduce the high-metallicity tail of the
metallicity distribution. We confirm previous findings by other authors that
the observed spread in the age-metallicity relation of solar neighbourhood
stars can be explained by the presence of stars which originated at different
Galactocentric distances, and we conclude that the chemical properties of stars
currently observed in the solar vicinity do suggest that stellar migration is
present to some extent.Comment: Accepted for publication by Ap
Realistic Sensitivity Curves For Pulsar Timing Arrays
We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner
Realistic Sensitivity Curves For Pulsar Timing Arrays
We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves, incorporating both red and white noise contributions to individual pulsar noise spectra, and the effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison between the results presented here and measured upper limit curves from actual analyses shows agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and computationally efficient manner
Recommended from our members
Improving Visual Field Examination of the Macula Using Structural Information
Purpose: To investigate a novel approach for structure-function modeling in glaucoma to improve visual field testing in the macula.
Methods: We acquired data from the macular region in 20 healthy eyes and 31 with central glaucomatous damage. Optical coherence tomography (OCT) scans were used to estimate the local macular ganglion cell density. Perimetry was performed with a fundus-tracking device using a 10-2 grid. OCT scans were matched to the retinal image from the fundus perimeter to accurately map the tested locations onto the structural damage. Binary responses from the subjects to all presented stimuli were used to calculate the structure-function model used to generate prior distributions for a ZEST (Zippy Estimation by Sequential Testing) Bayesian strategy. We used simulations based on structural and functional data acquired from an independent dataset of 20 glaucoma patients to compare the performance of this new strategy, structural macular ZEST (MacS-ZEST), with a standard ZEST.
Results: Compared to the standard ZEST, MacS-ZEST reduced the number of presentations by 13% in reliable simulated subjects and 14% with higher rates (≥20%) of false positive or false negative errors. Reduction in mean absolute error was not present for reliable subjects but was gradually more important with unreliable responses (≥10% at 30% error rate).
Conclusions: Binary responses can be modeled to incorporate detailed structural information from macular OCT into visual field testing, improving overall speed and accuracy in poor responders.
Translational Relevance: Structural information can improve speed and reliability for macular testing in glaucoma practice
A new method of measuring center-of-mass velocities of radially pulsating stars from high-resolution spectroscopy
We present a radial velocity analysis of 20 solar neighborhood RR Lyrae and 3
Population II Cepheids variables. We obtained high-resolution, moderate-to-high
signal-to-noise ratio spectra for most stars and obtained spectra were covering
different pulsation phases for each star. To estimate the gamma
(center-of-mass) velocities of the program stars, we use two independent
methods. The first, `classic' method is based on RR Lyrae radial velocity curve
templates. The second method is based on the analysis of absorption line
profile asymmetry to determine both the pulsational and the gamma velocities.
This second method is based on the Least Squares Deconvolution (LSD) technique
applied to analyze the line asymmetry that occurs in the spectra. We obtain
measurements of the pulsation component of the radial velocity with an accuracy
of 3.5 km s. The gamma velocity was determined with an accuracy
10 km s, even for those stars having a small number of spectra.
The main advantage of this method is the possibility to get the estimation of
gamma velocity even from one spectroscopic observation with uncertain pulsation
phase. A detailed investigation of the LSD profile asymmetry shows that the
projection factor varies as a function of the pulsation phase -- this is a
key parameter which converts observed spectral line radial velocity variations
into photospheric pulsation velocities. As a byproduct of our study, we present
41 densely-spaced synthetic grids of LSD profile bisectors that are based on
atmospheric models of RR Lyr covering all pulsation phases.Comment: 17 pages, 16 figures, accepted for publication in MNRAS;
doi:10.1093/mnras/stx294
- …