30 research outputs found

    Fractional charges in conventional sequential electron tunneling

    Full text link
    The notion of fractional charges was up until now reserved for quasiparticle excitations emerging in strongly correlated quantum systems, such as Laughlin states in the fractional quantum Hall effect, Luttinger quasiparticles, or parafermions. Here, we consider topological transitions in the full counting statistics of standard sequential electron tunneling, and find that they lead to the same type of charge fractionalization - strikingly without requiring exotic quantum correlations. This conclusion relies on the realization that fundamental integer charge quantization fixes the global properties of the transport statistics whereas fractional charges can only be well-defined locally. We then show that the reconciliation of these two contradicting notions results in a nontrivially quantized geometric phase defined in the detector space. In doing so, we show that detector degrees of freedom can be used to describe topological transitions in nonequilibrium open quantum systems. Moreover, the quantized geometric phase reveals a profound analogy between the fractional charge effect in sequential tunneling and fractional Josephson effect in topological superconducting junctions, where likewise the Majorana- or parafermions exhibit a charge which is at odds with the Cooper pair charge as the underlying unit of the supercurrent. In order to provide means for an experimental verification of our claims, we demonstrate the fractional nature of transport statistics at the example of highly feasible transport models, such as weakly tunnel-coupled quantum dots or charge islands. We then show that the geometric phase can be accessed through the detector's waiting time distribution. Finally, we find that topological transitions in the transport statistics could even lead to new applications, such as the unexpected possibility to directly measure features beyond the resolution limit of a detector.Comment: 28 pages, 10 figures; Supplemental Material linked under ancillary file

    Charge quantization and detector resolution

    Full text link
    Charge quantization, or the absence thereof, is a central theme in quantum circuit theory, with dramatic consequences for the predicted circuit dynamics. Very recently, the question of whether or not charge should actually be described as quantized has enjoyed renewed widespread interest, with however seemingly contradictory propositions. Here, we intend to reconcile these different approaches, by arguing that ultimately, charge quantization is not an intrinsic system property, but instead depends on the spatial resolution of the charge detector. We show that the latter can be directly probed by unique geometric signatures in the correlations of the supercurrent. We illustrate these findings at the example Josephson junction arrays in the superinductor regime, where the transported charge appears to be continuous. Finally, we comment on potential consequences of charge quantization beyond superconducting circuits.Comment: 26 pages, 3 figure

    Zero-frequency noise in adiabatically driven, interacting quantum systems

    Full text link
    We investigate current-current correlations of adiabatic charge pumping through interacting quantum dots weakly coupled to reservoirs. To calculate the zero-frequency noise for a time-dependently driven system, possibly in the presence of an additional dc bias, we perform within a real-time diagrammatic approach a perturbative expansion in the tunnel coupling to the reservoirs in leading and next-to-leading order. We apply this formalism to study the adiabatic correction to the zero-frequency noise, i.e., the pumping noise, in the case of a single-level quantum dot charge pump. If no stationary bias is applied, the adiabatic correction shows Coulomb-interaction-induced deviations from the fluctuation-dissipation theorem. Furthermore, we show that the adiabatic correction to the Fano factor carries information about the coupling asymmetry and is independent of the choice of the pumping parameters. When including a time-dependent finite bias, we find that there can be pumping noise even if there is zero adiabatically pumped charge. The pumping noise also indicates the respective direction of the bias-induced current and the pumping current

    Compact description of quantum phase slip junctions

    Full text link
    Quantum circuit theory is a powerful and ever-evolving tool to predict the dynamics of superconducting circuits. In its language, quantum phase slips (QPSs) are famously considered to be the exact dual to the Josephson effect. However, this duality renders the integration of QPS junctions into a unified theoretical framework very difficult, and as we show, gives rise to serious inconsistencies for different formalisms, and in some cases difficulties to include time-dependent flux driving. We propose to resolve these issues by reducing and compactifying the Hilbert space describing the QPS processes. Our treatment provides for the first time a unified description of the Aharonov-Bohm and Aharonov-Casher effects, properly defines the valid form of inductive interactions to an environment, and allows to account for recent insights on how to include electromotive forces. Finally, we show that the compactification is likewise important for correctly predicting the available computational space for qubit architectures involving QPS junctions.Comment: 25 pages, 7 figures, supplementary. Revisions in main text and supplementar

    Transport fluctuation relations in interacting quantum pumps

    Get PDF
    The understanding of out-of-equilibrium fluctuation relations in small open quantum systems has been a focal point of research in recent years. In particular, for systems with adiabatic time-dependent driving, it was shown that the fluctuation relations known from stationary systems do no longer apply due the geometric nature of the pumping current response. However, the precise physical interpretation of the corrected pumping fluctuation relations as well as the role of many-body interactions remained unexplored. Here, we study quantum systems with many-body interactions subject to slow time-dependent driving, and show that fluctuation relations of the charge current can in general not be formulated without taking into account the total energy current put into the system through the pumping process. Moreover, we show that this correction due to the input energy is nonzero only when Coulomb-interactions are present. Thus, fluctuation response relations offer an until now unrevealed opportunity to probe many-body correlations in quantum systems. We demonstrate our general findings at the concrete example of a single-level quantum dot model, and propose a scheme to measure the interaction-induced discrepancies from the stationary case.Comment: 13 pages, 2 figure

    Readout of relaxation rates by nonadiabatic pumping spectroscopy

    Get PDF
    We put forward nonadiabatic charge pumping as a method for accessing the different charge relaxation rates as well as the relaxation rates of excited orbital states in double-quantum-dot setups, based on extremely size-limited quantum dots and dopant systems. The rates are obtained in a well-separated manner from plateaus, occurring when comparing the steady-state current for reversed driving cycles. This yields a reliable readout independent of any fitting parameters. Importantly, the nonadiabatic pumping spectroscopy essentially exploits the same driving scheme as the operation of these devices generally employs. We provide a detailed analysis of the working principle of the readout scheme as well as of possible errors, thereby demonstrating its broad applicability. The precise knowledge of relaxation rates is highly relevant for the implementation of time-dependently operated devices, such as electron pumps for metrology or qubits in quantum information.Comment: 14 pages, 5 figure

    Circuit quantization with time-dependent magnetic fields for realistic geometries

    Full text link
    Quantum circuit theory has become a powerful and indispensable tool to predict the dynamics of superconducting circuits. Surprisingly however, the question of how to properly account for a time-dependent driving via external magnetic fields has hardly been addressed so far. Here, we derive a general recipe to construct a low-energy Hamiltonian, taking as input only the circuit geometry and the solution of the external magnetic fields. A gauge fixing procedure for the scalar and vector potentials is given which assures that time-varying magnetic fluxes make contributions only to the potential function in the Schr\"odinger equation. Our proposed procedure is valid for continuum geometries and thus significantly generalizes previous efforts, which were based on discrete circuits. We study some implications of our results for the concrete example of a parallel-plate SQUID circuit. We show that if we insist on representing the response of this SQUID with individual, discrete capacitances associated with each individual Josephson junction, this is only possible if we permit the individual capacitance values to be negative, time-dependent or even momentarily singular. Finally, we provide some experimentally testable predictions, such as a strong enhancement of the qubit relaxation rates arising from the effective negative capacitances, and the emergence of a Berry phase due to time dependence of these capacitances.Comment: 17 pages, 4 figure

    Control of Andreev bound state population and related charge-imbalance effect

    Full text link
    Motivated by recent experimental research, we study the processes in an ac driven superconducting constriction whereby one quasiparticle is promoted to the delocalized states outside the superconducting gap. We demonstrate that with these processes one can control the population of the Andreev bound states in the constriction. We stress an interesting charge asymmetry of these processes that may produce a charge imbalance of accumulated quasiparticles, which depends on the phase

    Electromotive force in driven topological quantum circuits

    Full text link
    Time-dependent control of superconducting quantum circuits is a prerequisite for building scalable quantum hardware. The quantum description of these circuits is complicated due to the electromotive force (emf) induced by time-varying magnetic fields. Here, we examine how the emf modifies the fractional Josephson effect. We show that a time-varying flux introduces a new term that depends on the geometry of both the circuit and the applied magnetic field. This term can be probed via current and charge measurements in closed-loop and open-circuit geometries. Our results refine the current understanding of how to properly describe time-dependent control of topological quantum circuits.Comment: 13 pages, 5 figures; added appendix C, added acknowledgments, improved overall flow, results and figures unchange
    corecore