4,425 research outputs found
Validating gravitational-wave detections: The Advanced LIGO hardware injection system
Hardware injections are simulated gravitational-wave signals added to the Laser Interferometer Gravitational-wave Observatory (LIGO). The detectorsâ test masses are physically displaced by an actuator in order to simulate the effects of a gravitational wave. The simulated signal initiates a control-system response which mimics that of a true gravitational wave. This provides an end-to-end test of LIGOâs ability to observe gravitational waves. The gravitational-wave analyses used to detect and characterize signals are exercised with hardware injections. By looking for discrepancies between the injected and recovered signals, we are able to characterize the performance of analyses and the coupling of instrumental subsystems to the detectorsâ output channels. This paper describes the hardware injection system and the recovery of injected signals representing binary black hole mergers, a stochastic gravitational wave background, spinning neutron stars, and sine-Gaussians
Thymus Ontogeny in Frogs: T-Cell Renewal at Metamorphosis
Metamorphosis in amphibians presents a unique problem for the developing immune
system. Because tadpoles are free-living, they need an immune system to protect against
potential pathogens. However, at metamorphosis, they acquire a variety of new adultspecific
molecules to which the tadpole immune system must become tolerant. We
hypothesized that Xenopus laevis tadpoles may avoid potentially destructive antiself
responses by largely discarding the larval immune system at metamorphosis and
acquiring a new one. By implanting triploid (3N) thymuses into diploid (2N) hosts, we
examined the influx and expansion of host T-cell precursors in the donor thymus of
normally metamorphosing and metamorphosis-inhibited frogs. We observed that donor
thymocytes are replaced by host-derived cells during metamorphosis, but inhibition of
metamorphosis does not prevent this exchange of cells. The implanted thymuses export
T cells to the spleen. This donor-derived pool of cells declines after metamorphosis in
normally developing frogs but is retained to a greater extent if metamorphosis is
inhibited. These studies confirm previous observations of a metamorphosis-associated
wave of expansion of T cells and demonstrate that it is not dependent on the relatively
high concentrations of thyroid hormones required for metamorphosis. Although some
larval T cells persist through metamorphosis, others may be destroyed or the larval
population is significantly diluted by the expanding adult population
Laser driven launch vehicles for continuous access to space
The availability of megawatt laser systems in the next century will make laser launch systems from ground to orbit feasible and useful. Systems studies indicate launch capabilities of 1 ton payload per gigawatt laser power. Recent research in ground to orbit laser propulsion has emphasized laser supported detonation wave thrusters driven by repetitively pulsed infrared lasers. In this propulsion concept each laser repetition cycle consists of two pulses. A lower energy first pulse is used to vaporize a small amount of solid propellant and then after a brief expansion period, a second and higher energy laser pulse is used to drive a detonation wave through the expanded vapor. The results are reported of numerical studies comparing the detonation wave properties of various candidate propellants, and the simulation of thruster performance under realistic conditions. Experimental measurements designed to test the theoretical predictions are also presented. Measurements are discussed of radiance and opacity in absorption waves, and mass loss and momentum transfer. These data are interpreted in terms of specific impulse and energy conversion efficiency
Full-Scale Lateral Load Testing of Deep Foundations Using Blast-Induced Liquefaction
To improve our understanding of the lateral load behavior of deep foundations in liquefied soil, a series of full-scale lateral load tests have been performed at the National Geotechnical Experimentation Site (NGES) at Treasure Island in San Francisco, California. The ground around the test piles was liquefied using explosives prior to lateral load testing. The goal of the project is to develop load-displacement relationships for bored and driven piles and pile groups in liquefied sand under full-scale conditions for improved and non-improved ground. The results of this investigation confirmed that controlled blasting techniques could successfully be used to induce liquefaction in a well-defined, limited area for field-testing purposes. Excess pore pressure ratios greater than 0.8 were typically maintained for 4 to 10 minutes after blasting. Data were collected showing the behavior of laterally loaded piles before and after liquefaction in non-improved ground. Following liquefaction, the stiffness of the soil-foundation system typically decreased by 70 to 80% of its pre-liquefaction value non-improved ground. Ground improvement with stone columns was then performed prior to an additional series of tests. Lateral load tests were again conducted before and after blasting to induce liquefaction. Cone penetration testing following the installation of stone columns found that the density was improved significantly. As a result, the stiffness of the foundation system following blasting was 2.9 to 3.6 times that in the liquefied soil. Subsequent tests involving more than twice as many piles or 50% larger piles provided less than 50% of the increased resistance produced by stone column treatment alone. This study provides some of the first full-scale quantitative results on the improvement of foundation performance due to ground improvement in a liquefiable deposit
Converting InSAR- and GNSS-derived strain rate maps into earthquake hazard models for Anatolia
<p>Geodetic measurements of crustal deformation rates can provide important constraints on a region’s earthquake hazard that purely seismicity-based hazard models may miss. For example, geodesy might show that strain (or a deficit of seismic moment) is accumulating faster than the total rate at which known earthquakes have released it, implying that the long-term hazard may include larger earthquakes with long recurrence intervals (and/or temporal increases in seismicity rates). Conversely, the moment release rate in recent earthquakes might surpass the geodetic moment buildup rate, suggesting that the long-term-average earthquake activity and hazard may in fact may be more quiescent than might be estimated using the earthquake history alone. Such geodetic constraints, however, have traditionally been limited by poor spatial and/or temporal sampling, resulting in ambiguities about how the lithosphere accommodates strain in space and time that can bias estimates of the resulting hazard. High-resolution deformation maps address this limitation by imaging (rather than presuming and/or modelling) where and how deformation takes place. These maps are now within reach for the Alpine-Himalayan Belt – one of the most populous and seismically hazardous regions on Earth – thanks to the COMET-LiCSAR InSAR processing system, which performs large-scale automated processing and timeseries analysis of Sentinel-1 data provided by the EU’s Copernicus programme. We are pairing LiCSAR products with GNSS data to generate high-resolution maps of interseismic surface motion (velocity) and strain rate for the Anatolia region. Here we quantitively investigate what these strain rate distributions imply for seismic hazard in this region, using two approaches in parallel.</p><p>First, building on previous work, we develop a fully probability-based method to pair geodesy and seismic catalogs to estimate the recurrence times of large, moderate and small earthquakes in a given region. We assume that earthquakes 1) obey a power-law magnitude-frequency distribution up to a maximum magnitude and 2) collectively release seismic moment at the same rate that we estimate it is accumulating from the strain rate maps. Iterating over various magnitude-frequency distributions and their governing parameters, and formally incorporating uncertainties in moment buildup rate and the magnitudes of recorded earthquakes, we build a probabilistic long-term-average earthquake model for Anatolia as a whole, including the most likely maximum earthquake magnitude. Second, we estimate how seismic hazard may vary from place to place within Anatolia. Using insights from dislocation models, we identify two key signatures of a locked fault in a strain rate field, allowing us to convert the newly developed strain maps to “effective fault maps.” Additionally, we explore how characteristics of earthquake magnitude-frequency distributions may scale with the rate of strain (or moment) buildup, and what these scaling relations imply for the distribution of hazard in Anatolia, using the seismic catalog to evaluate these hypotheses. We also explore the implications of our findings for seismic hazard and address how to expand these approaches to the Alpine-Himalaya Belt as a whole.</p>
</jats:p
Plasduino: an inexpensive, general purpose data acquisition framework for educational experiments
Based on the Arduino development platform, Plasduino is an open-source data
acquisition framework specifically designed for educational physics
experiments. The source code, schematics and documentation are in the public
domain under a GPL license and the system, streamlined for low cost and ease of
use, can be replicated on the scale of a typical didactic lab with minimal
effort. We describe the basic architecture of the system and illustrate its
potential with some real-life examples.Comment: 11 pages, 10 figures, presented at the XCIX conference of the
Societ\`a Italiana di Fisic
Scaled Quail Reproduction in the Trans-Pecos Region of Texas
Scaled quail (Callipepla squamata) populations have declined markedly throughout their range. We monitored hatch rates and nest placement of radio-marked female scaled quail (n 1â4 210) in Pecos County, Texas relative to the availability and location of âspreader damsâ (i.e., shallow water catchments) through the nesting seasons of 1999 and 2000. Hatch rates were high both years (i.e., 67 and 84% for 1999 and 2000, respectively). The predominant nesting microhabitat was tobosa (Pleuraphis mutica), which accounted for 85% of the nests located. We failed to document any direct impacts of spreader dams on nesting ecology of scaled quail
On Characterizing Particle Shape
It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength
Involvement of Thyroid Hormones in the Expression of MHC class I Antigens During Ontogeny in Xenopus
The major histocompatibility complex (MHC) is a cluster of genes encoding products central
to all major functions of the vertebrate immune system. Evidence for an MHC can be found
in all vertebrate groups that have been examined except the jawless fishes. Expression of
MHC class I and class II antigens early in ontogeny is critically important for development
of T lymphocytes capable of discriminating self from nonself. Because of this essential role
in T-cell development, the ontogeny of MHC expression in the South African clawed frog,
Xenopus laevis, was studied. Previous studies of MHC class I expression in Xenopus laevis suggested that class I antigens are virtually absent from tadpole tissues until climax of metamorphosis.
We therefore examined the possible role of thyroid hormones (TH) in the induction
of class I. By flow cytometry, a small amount of class I expression was detectable on
splenocytes and erythrocytes in untreated frogs at prometamorphic stages 55-58, and the
amount increased significantly at the conclusion of metamorphic climax. Thus, metamorphosis
is associated with increased intensity of class I expression. Neither inhibition nor acceleration
of metamorphosis altered the timing of onset of class I expression. However, inhibition
of metamorphosis prevented the increase in class I expression characteristic of adult
cell populations. Because expression was not accelerated in TH-treated frogs or delayed in
metamorphosis-inhibited frogs, it is unlikely that TH are the direct developmental cues that
induce expression, although they seem to be required for the upregulation of class I expression
occurring at metamorphosis. Differences in the pattern of expression in different subpopulations
of cells suggest a complex pattern of regulation of expression of class I antigens
during ontogeny
- âŠ