9 research outputs found

    Prognostic implication of TERT promoter mutation and circulating tumor cells in muscle-invasive bladder cancer

    Get PDF
    Purpose: Current clinical prognostic factors are not accurate enough to identify and monitor those muscle-invasive bladder cancer (MIBC) patients at high risk of progression after radical cystectomy (RC). Here, we determined genetic alterations in the tumor and circulating tumor cell (CTC) enumeration to find biomarkers useful for the management of MIBC after RC. Methods: Thirty-nine MIBC patients undergoing RC were included. Tumoral tissue DNA was analyzed by next generation sequencing. CTCs were isolated from blood collected before RC and one, four and 12 months later. Results: Sixteen (41%) patients progressed in a median time of 8.5 months and 11 (69%) of these patients harbored the TERT c.-124C > T mutation. All progressive patients harboring the TERT c.-124C > T mutation presented a significant increase in CTC number 12 months after RC compared to those without the mutation. Additionally, CTC number at 12 months was identified as an independent prognostic biomarker for tumor progression and cancer specific survival (CSS). Ten (63%) progressive patients showed an increment of CTC number with a median anticipation period of four months compared with imaging techniques. Conclusions: The TERT c.-124C > T mutation could be considered a biomarker of aggressivity. CTC enumeration is a useful tool for identifying MIBC patients at high risk of progression and CSS after RC and for detecting tumor progression earlier than imaging techniques

    Cell-Free DNA as a Prognostic Biomarker for Monitoring Muscle-Invasive Bladder Cancer

    Get PDF
    Cell-free DNA (cfDNA) has recently emerged as a real-time biomarker for diagnosis, monitoring and prediction of therapy response in tumoral disease. Here, we evaluated cfDNA as a prognostic biomarker for monitoring muscle-invasive bladder cancer (MIBC) patients at different follow-up time points. Blood samples from 37 MIBC patients who underwent radical cystectomy (RC) were collected at cystectomy and 1, 4, 12 and 24 months later. Plasma cfDNA amount and fragmentation patterns were determined. Four mutations were analyzed in cfDNA to detect circulating tumor DNA (ctDNA) during patient follow-up. During a median follow-up of 36 months, 46% of patients progressed; median time to progression was 10 months. cfDNA levels and ctDNA status four months after RC were identified as independent prognostic biomarkers of tumor progression (HR 5.290; p = 0.033) and cancer-specific survival (HR 4.199; p = 0.038), respectively. Furthermore, ctDNA clearance four months after RC was significantly associated with patients’ clinical outcomes. In conclusion, cfDNA levels and ctDNA status four months after RC have prognostic implications in MIBC patients. In addition, cfDNA monitoring is useful to predict patient outcomes after RC. cfDNA analysis in the clinical setting could greatly improve MIBC patient management.This research was funded by the Instituto de Salud Carlos III (ISCIII) through the Plan Estatal de Investigación Científica y Técnica y de Innovación 2018–2020, project reference number PI17/01343, and co-funded by the European Regional Development Fund (ERDF)

    Prognostic Gene Expression-Based Signature in Clear-Cell Renal Cell Carcinoma

    Full text link
    The inaccuracy of the current prognostic algorithms and the potential changes in the therapeutic management of localized ccRCC demands the development of an improved prognostic model for these patients. To this end, we analyzed whole-transcriptome profiling of 26 tissue samples from progressive and non-progressive ccRCCs using Illumina Hi-seq 4000. Differentially expressed genes (DEG) were intersected with the RNA-sequencing data from the TCGA. The overlapping genes were used for further analysis. A total of 132 genes were found to be prognosis-related genes. LASSO regression enabled the development of the best prognostic six-gene panel. Cox regression analyses were performed to identify independent clinical prognostic parameters to construct a combined nomogram which includes the expression of CERCAM, MIA2, HS6ST2, ONECUT2, SOX12, TMEM132A, pT stage, tumor size and ISUP grade. A risk score generated using this model effectively stratified patients at higher risk of disease progression (HR 10.79; p < 0.001) and cancer-specific death (HR 19.27; p < 0.001). It correlated with the clinicopathological variables, enabling us to discriminate a subset of patients at higher risk of progression within the Stage, Size, Grade and Necrosis score (SSIGN) risk groups, pT and ISUP grade. In summary, a gene expression-based prognostic signature was successfully developed providing a more precise assessment of the individual risk of progression

    Assessment of aggressive bladder cancer mutations in plasma cell-free DNA

    Get PDF
    Background and aimsThe spatial and temporal genetic heterogeneity of bladder cancer (BC) makes challenging to find specific drivers of metastatic disease, thus preventing to determine those BC patients at high risk of tumor progression. Our aim was to identify DNA mutations providing aggressive behavior to bladder tumors and analyze them in patients’ cell-free DNA (cfDNA) during their follow-up after radical cystectomy (RC) in order to monitor tumor evolution.MethodsSix BC patients who underwent RC and presented disease progression during their follow-up were included. Next-generation sequencing was used to determine somatic mutations in several primary tumor and metastatic specimens from each patient. Shared DNA mutations between primary bladder tumor and metastatic sites were identified in cfDNA samples through droplet digital PCR.ResultsBesides BC genetic heterogeneity, specific mutations in at least one of these genes —TERT, ATM, RB1, and FGFR3— were found in primary tumors and their metastases in all patients. These mutations were also identified in the patients’ cfDNA at different follow-up time points. Additionally, the dynamic changes of these mutations in cfDNA allowed us to determine tumor evolution in response to treatment.ConclusionThe analysis of BC mutations associated with poor prognosis in plasma cfDNA could be a valuable tool to monitor tumor evolution, thus improving the clinical management of BC patients

    Cell-Free DNA as a Prognostic Biomarker for Monitoring Muscle-Invasive Bladder Cancer

    Full text link
    Cell-free DNA (cfDNA) has recently emerged as a real-time biomarker for diagnosis, monitoring and prediction of therapy response in tumoral disease. Here, we evaluated cfDNA as a prognostic biomarker for monitoring muscle-invasive bladder cancer (MIBC) patients at different follow-up time points. Blood samples from 37 MIBC patients who underwent radical cystectomy (RC) were collected at cystectomy and 1, 4, 12 and 24 months later. Plasma cfDNA amount and fragmentation patterns were determined. Four mutations were analyzed in cfDNA to detect circulating tumor DNA (ctDNA) during patient follow-up. During a median follow-up of 36 months, 46% of patients progressed; median time to progression was 10 months. cfDNA levels and ctDNA status four months after RC were identified as independent prognostic biomarkers of tumor progression (HR 5.290; p = 0.033) and cancer-specific survival (HR 4.199; p = 0.038), respectively. Furthermore, ctDNA clearance four months after RC was significantly associated with patients' clinical outcomes. In conclusion, cfDNA levels and ctDNA status four months after RC have prognostic implications in MIBC patients. In addition, cfDNA monitoring is useful to predict patient outcomes after RC. cfDNA analysis in the clinical setting could greatly improve MIBC patient management

    Prognostic Gene Expression-Based Signature in Clear-Cell Renal Cell Carcinoma

    No full text
    The inaccuracy of the current prognostic algorithms and the potential changes in the therapeutic management of localized ccRCC demands the development of an improved prognostic model for these patients. To this end, we analyzed whole-transcriptome profiling of 26 tissue samples from progressive and non-progressive ccRCCs using Illumina Hi-seq 4000. Differentially expressed genes (DEG) were intersected with the RNA-sequencing data from the TCGA. The overlapping genes were used for further analysis. A total of 132 genes were found to be prognosis-related genes. LASSO regression enabled the development of the best prognostic six-gene panel. Cox regression analyses were performed to identify independent clinical prognostic parameters to construct a combined nomogram which includes the expression of CERCAM, MIA2, HS6ST2, ONECUT2, SOX12, TMEM132A, pT stage, tumor size and ISUP grade. A risk score generated using this model effectively stratified patients at higher risk of disease progression (HR 10.79; p p < 0.001). It correlated with the clinicopathological variables, enabling us to discriminate a subset of patients at higher risk of progression within the Stage, Size, Grade and Necrosis score (SSIGN) risk groups, pT and ISUP grade. In summary, a gene expression-based prognostic signature was successfully developed providing a more precise assessment of the individual risk of progression

    Tumor-Agnostic Circulating Tumor DNA Testing for Monitoring Muscle-Invasive Bladder Cancer

    No full text
    Circulating tumor DNA (ctDNA) has recently emerged as a real-time prognostic and predictive biomarker for monitoring cancer patients. Here, we aimed to ascertain whether tumor-agnostic ctDNA testing would be a feasible strategy to monitor disease progression and therapeutic response in muscle-invasive bladder cancer (MIBC) patients after radical cystectomy (RC). Forty-two MIBC patients who underwent RC were prospectively included. Blood samples from these patients were collected at different follow-up time points. Two specific mutations (TERT c.1-124C&gt;T and ATM c.1236-2A&gt;T) were analyzed in the patients&rsquo; plasma samples by droplet digital PCR to determine their ctDNA status. During a median follow-up of 21 months, 24% of patients progressed in a median of six months. ctDNA status was identified as a prognostic biomarker of tumor progression before RC and 4 and 12 months later (HR 6.774, HR 3.673, and HR 30.865, respectively; p &lt; 0.05). Lastly, dynamic changes in ctDNA status between baseline and four months later were significantly associated with patient outcomes (p = 0.045). In conclusion, longitudinal ctDNA analysis using a tumor-agnostic approach is a potential tool for monitoring MIBC patients after RC. The implementation of this testing in a clinical setting could improve disease management and patients&rsquo; outcomes

    Clinicopathological and Molecular Prognostic Classifier for Intermediate/High-Risk Clear Cell Renal Cell Carcinoma

    No full text
    The probability of tumor progression in intermediate/high-risk clear cell renal cell carcinoma (ccRCC) is highly variable, underlining the lack of predictive accuracy of the current clinicopathological factors. To develop an accurate prognostic classifier for these patients, we analyzed global gene expression patterns in 13 tissue samples from progressive and non-progressive ccRCC using Illumina Hi-seq 4000. Expression levels of 22 selected differentially expressed genes (DEG) were assessed by nCounter analysis in an independent series of 71 ccRCCs. A clinicopathological-molecular model for predicting tumor progression was developed and in silico validated in a total of 202 ccRCC patients using the TCGA cohort. A total of 1202 DEGs were found between progressive and non-progressive intermediate/high-risk ccRCC in RNAseq analysis, and seven of the 22 DEGs selected were validated by nCounter. Expression of HS6ST2, pT stage, tumor size, and ISUP grade were found to be independent prognostic factors for tumor progression. A risk score generated using these variables was able to distinguish patients at higher risk of tumor progression (HR 7.27; p &lt; 0.001), consistent with the results obtained from the TCGA cohort (HR 2.74; p &lt; 0.002). In summary, a combined prognostic algorithm was successfully developed and validated. This model may aid physicians to select high-risk patients for adjuvant therapy
    corecore