189 research outputs found

    Recognition of genetic predisposition in pediatric cancer patients: An easy-to-use selection tool

    Get PDF
    Genetic predisposition for childhood cancer is under diagnosed. Identifying these patients may lead to therapy adjustments in case of syndrome-related increased toxicity or resistant disease and syndrome-specific screening programs may lead to early detection of a further independent malignancy. Cancer surveillance might also be warranted for affected relatives and detection of a genetic mutation can allow for reproductive counseling.Here we present an easy-to-use selection tool, based on a systematic review of pediatric cancer predisposing syndromes, to identify patients who may benefit from genetic counseling. The selection tool involves five questions concerning family history, the type of malignancy, multiple primary malignancies, specific features and excessive toxicity, which results in the selection of those patients that may benefit from referral to a clinical geneticist

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate Îł\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer.

    Get PDF
    Mutational processes underlie cancer initiation and progression. Signatures of these processes in cancer genomes may explain cancer etiology and could hold diagnostic and prognostic value. We developed a strategy that can be used to explore the origin of cancer-associated mutational signatures. We used CRISPR-Cas9 technology to delete key DNA repair genes in human colon organoids, followed by delayed subcloning and whole-genome sequencing. We found that mutation accumulation in organoids deficient in the mismatch repair gene MLH1 is driven by replication errors and accurately models the mutation profiles observed in mismatch repair-deficient colorectal cancers. Application of this strategy to the cancer predisposition gene NTHL1, which encodes a base excision repair protein, revealed a mutational footprint (signature 30) previously observed in a breast cancer cohort. We show that signature 30 can arise from germline NTHL1 mutations

    Clinical and Molecular Characteristics and Outcome of Cystic Partially Differentiated Nephroblastoma and Cystic Nephroma: A Narrative Review of the Literature

    Get PDF
    In children presenting with a predominantly cystic renal tumor, the most likely diagnoses include cystic partially differentiated nephroblastoma (CPDN) and cystic nephroma (CN). Both entities are rare and limited information on the clinical and molecular characteristics, treatment, and outcome is available since large cohort studies are lacking. We performed an extensive literature review, in which we identified 113 CPDN and 167 CN. The median age at presentation for CPDN and CN was 12 months (range: 3 weeks–4 years) and 16 months (prenatal diagnosis–16 years), respectively. No patients presented with metastatic disease. Bilateral disease occurred in both entities. Surgery was the main treatment for both. Two/113 CPDN patients and 26/167 CN patients had previous, concomitant, or subsequent other tumors. Unlike CPDN, CN was strongly associated with somatic (n = 27/29) and germline (n = 12/12) DICER1-mutations. Four CPDN patients and one CN patient relapsed. Death was reported in six/103 patients with CPDN and six/118 CN patients, none directly due to disease. In conclusion, children with CPDN and CN are young, do not present with metastases, and have an excellent outcome. Awareness of concomitant or subsequent tumors and genetic testing is important. International registration of cystic renal tumor cohorts is required to enable a better understanding of clinical and genetic characteristics

    Mutational mechanisms in multiply relapsed pediatric acute lymphoblastic leukemia

    Get PDF
    Pediatric acute lymphoblastic leukemia (ALL) is marked by low mutational load at initial diagnosis, which increases at relapse. To determine which processes are active in (relapsed) ALL and how they behave during disease progression before and after therapy, we performed whole genome sequencing on 97 tumor samples of 29 multiply relapsed ALL patients. Mutational load increased upon relapse in 28 patients and upon every subsequent relapse in 22 patients. In addition to two clock-like mutational processes, we identified UV-like damage, APOBEC activity, reactive oxygen species, thiopurine-associated damage and an unknown therapy component as drivers of mutagenesis. Mutational processes often affected patients over longer time periods, but could also occur in isolated events, suggesting the requirement of additional triggers. Thiopurine exposure was the most prominent source of new mutations in relapse, affecting over half of the studied patients in first and/or later relapse and causing potential relapse-driving mutations in multiple patients. Our data demonstrate that multiple mutational processes frequently act in parallel as prominent secondary drivers with dynamic activity during ALL development and progression

    TRIM28 variants and Wilms' tumour predisposition

    Get PDF
    TRIM28 was recently identified as a Wilms' tumour (WT) predisposition gene, with germline pathogenic variants identified in around 1% of isolated and 8% of familial WT cases. TRIM28 variants are associated with epithelial WT, but the presence of other tumour components or anaplasia does not exclude the presence of a germline or somatic TRIM28 variant. In children with WT, TRIM28 acts as a classical tumour suppressor gene, with both alleles generally disrupted in the tumour. Therefore, loss of TRIM28 (KAP1/TIF1beta) protein expression in tumour tissue by immunohistochemistry is an effective strategy to identify patients carrying pathogenic TRIM28 variants. TRIM28 is a ubiquitously expressed corepressor that binds transcription factors in a context-, species-, and cell-type-specific manner to control the expression of genes and transposable elements during embryogenesis and cellular differentiation. In this review, we describe the inheritance patterns, histopathological and clinical features of TRIM28-associated WT, as well as potential underlying mechanisms of tumourigenesis during embryonic kidney development. Recognizing germline TRIM28 variants in patients with WT can enable counselling, genetic testing, and potential early detection of WT in other children in the family. A further exploration of TRIM28-associated WT will help to unravel the diverse and complex mechanisms underlying WT development. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland

    IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study

    Get PDF
    Background: Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. Methods and Findings: We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor’s ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in pat

    BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway

    Get PDF
    Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton’s tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc–mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453
    • …
    corecore