339 research outputs found

    Cross Section Ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity

    Get PDF
    The staged increase of the LHC beam energy provides a new class of interesting observables, namely ratios and double ratios of cross sections of various hard processes. The large degree of correlation of theoretical systematics in the cross section calculations at different energies leads to highly precise predictions for such ratios. We present in this letter few examples of such ratios, and discuss their possible implications, both in terms of opportunities for precision measurements and in terms of sensitivity to Beyond the Standard Model dynamics.Comment: 19 pages, 9 figure

    Epicrania fugax with backward radiation: clinical characteristics of nine new cases

    Get PDF
    Epicrania fugax (EF) is a novel syndrome, described as a paroxysmal and brief head pain, starting in posterior cranial regions and rapidly spreading forward ipsilateral eye, nose or forehead. Two patients with comparable clinical features stemming from frontal scalp to ipsilateral posterior regions have been recently described and proposed as backward radiation epicrania fugax (BREF). We report a new series of nine BREF and compare their clinical characteristics with 18 forward radiation EF (FREF). Since first description of BREF in February 2010 we have assessed nine patients (four males, five females) with this clinical picture at an outpatient headache office in a Tertiary Hospital. Comparison is established with 18 FREF patients (6 males, 12 females), attended since the publication of first series of EF in March 2008. We found no differences between BREF and FREF, respectively, in age at onset (43.4 ± 13.1 vs. 42.5 ± 17.7 years), female/male ratio (5/4 vs. 12/6), pain intensity (6.9 ± 2.1 vs. 6.8 ± 2.1 in a 0–10 visual analogical scale), duration (7.1 ± 4.9 vs. 5.7 ± 4.3 s) and frequency of episodes per day (7 ± 8.4 vs. 9.9 ± 15.4). Patients in BREF group presented less frequently interictal pain in stemming point (22.2 vs. 55.5%) and accompanying autonomic signs (33.3 vs. 55.5%), but without statistical significance in both the cases. This series reinforces the proposal of EF as a new headache variant or a new headache syndrome. Clinical picture of brief pain paroxysms starting in the anterior scalp and radiating backwards does not fit known headaches or neuralgias and might correspond to a reverse variant of EF, clinical characteristics of which are comparable to FREF

    A new approach to treatment of resistant gram-positive infections: potential impact of targeted IV to oral switch on length of stay

    Get PDF
    BACKGROUND: Patients prescribed intravenous (IV) glycopeptides usually remain in hospital until completion of this treatment. Some of these patients could be discharged earlier if a switch to an oral antibiotic was made. This study was designed to identify the percentage of inpatients currently prescribed IV glycopeptides who could be discharged earlier if a switch to an oral agent was used, and to estimate the number of bed days that could be saved. We also aimed to identify the patient group(s) most likely to benefit, and to estimate the number of days of IV therapy that could be prevented in patients who remained in hospital. METHODS: Patients were included if they were prescribed an IV glycopeptide for 5 days or more. Predetermined IV to oral antibiotic switch criteria and discharge criteria were applied. A multiple logistic regression model was used to identify the characteristics of the patients most likely to be suitable for earlier discharge. RESULTS: Of 211 patients, 62 (29%) could have had a reduced length of stay if they were treated with a suitable oral antibiotic. This would have saved a total of 649 inpatient days (median 5 per patient; range 1–54). A further 31 patients (15%) could have switched to oral therapy as an inpatient thus avoiding IV line use. The patients most likely to be suitable for early discharge were those with skin and soft tissue infection, under the cardiology, cardiothoracic surgery, orthopaedics, general medical, plastic surgery and vascular specialities, with no high risk comorbidity and less than five other regularly prescribed drugs. CONCLUSION: The need for glycopeptide therapy has a significant impact on length of stay. Effective targeting of oral antimicrobials could reduce the need for IV access, allow outpatient treatment and thus reduce the length of stay in patients with infections caused by antibiotic resistant gram-positive bacteria

    Common Variants of the Liver Fatty Acid Binding Protein Gene Influence the Risk of Type 2 Diabetes and Insulin Resistance in Spanish Population

    Get PDF
    SummaryThe main objective was to evaluate the association between SNPs and haplotypes of the FABP1-4 genes and type 2 diabetes, as well as its interaction with fat intake, in one general Spanish population. The association was replicated in a second population in which HOMA index was also evaluated.Methods1217 unrelated individuals were selected from a population-based study [Hortega study: 605 women; mean age 54 y; 7.8% with type 2 diabetes]. The replication population included 805 subjects from Segovia, a neighboring region of Spain (446 females; mean age 52 y; 10.3% with type 2 diabetes). DM2 mellitus was defined in a similar way in both studies. Fifteen SNPs previously associated with metabolic traits or with potential influence in the gene expression within the FABP1-4 genes were genotyped with SNPlex and tested. Age, sex and BMI were used as covariates in the logistic regression model.ResultsOne polymorphism (rs2197076) and two haplotypes of the FABP-1 showed a strong association with the risk of DM2 in the original population. This association was further confirmed in the second population as well as in the pooled sample. None of the other analyzed variants in FABP2, FABP3 and FABP4 genes were associated. There was not a formal interaction between rs2197076 and fat intake. A significant association between the rs2197076 and the haplotypes of the FABP1 and HOMA-IR was also present in the replication population.ConclusionsThe study supports the role of common variants of the FABP-1 gene in the development of type 2 diabetes in Caucasians

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    Get PDF
    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology

    MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion

    Get PDF
    Mitochondria are double-membraned organelles with variable shapes influenced by metabolic conditions, developmental stage, and environmental stimuli. Their dynamic morphology is a result of regulated and balanced fusion and fission processes. Fusion is crucial for the health and physiological functions of mitochondria, including complementation of damaged mitochondrial DNAs and the maintenance of membrane potential. Mitofusins are dynamin-related GTPases that are essential for mitochondrial fusion. They are embedded in the mitochondrial outer membrane and thought to fuse adjacent mitochondria via combined oligomerization and GTP hydrolysis. However, the molecular mechanisms of this process remain unknown. Here we present crystal structures of engineered human MFN1 containing the GTPase domain and a helical domain during different stages of GTP hydrolysis. The helical domain is composed of elements from widely dispersed sequence regions of MFN1 and resembles the ‘neck’ of the bacterial dynamin-like protein. The structures reveal unique features of its catalytic machinery and explain how GTP binding induces conformational changes to promote GTPase domain dimerization in the transition state. Disruption of GTPase domain dimerization abolishes the fusogenic activity of MFN1. Moreover, a conserved aspartate residue trigger was found to affect mitochondrial elongation in MFN1, probably through a GTP-loading-dependent domain rearrangement. Thus, we propose a mechanistic model for MFN1-mediated mitochondrial tethering, and our results shed light on the molecular basis of mitochondrial fusion and mitofusin-related human neuromuscular disorders

    Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs

    Get PDF
    Inhibition of a single transduction pathway is often inefficient due to activation of alternative signalling. The mammalian target of rapamycin (mTOR) is a key intracellular kinase integrating proliferation, survival and angiogenic pathways and has been implicated in the resistance to EGFR inhibitors. Thus, mTOR blockade is pursued to interfere at multiple levels with tumour growth. We used everolimus (RAD001) to inhibit mTOR, alone or in combination with anti-EGFR drugs gefitinib or cetuximab, on human cancer cell lines sensitive and resistant to EGFR inhibitors, both in vitro and in vivo. We demonstrated that everolimus is active against EGFR-resistant cancer cell lines and partially restores the ability of EGFR inhibitors to inhibit growth and survival. Everolimus reduces the expression of EGFR-related signalling effectors and VEGF production, inhibiting proliferation and capillary tube formation of endothelial cells, both alone and in combination with gefitinib. Finally, combination of everolimus and gefitinib inhibits growth of GEO and GEO-GR (gefitinib resistant) colon cancer xenografts, activation of signalling proteins and VEGF secretion. Targeting mTOR pathway with everolimus overcomes resistance to EGFR inhibitors and produces a cooperative effect with EGFR inhibitors, providing a valid therapeutic strategy to be tested in a clinical setting

    Parton distribution benchmarking with LHC data

    Get PDF
    We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. We quantify the agreement between data and theory by computing the χ 2 for each data set with all the various PDFs. PDF comparisons are performed consistently for common values of the strong coupling. We also present a benchmark comparison of jet production at the LHC, comparing the results from various available codes and scale settings. Finally, we discuss the implications of the updated NNLO PDF sets for the combined PDF+α s uncertainty in the gluon fusion Higgs production cross section
    corecore