3,776 research outputs found
Equation of state of sticky-hard-sphere fluids in the chemical-potential route
The coupling-parameter method, whereby an extra particle is progressively
coupled to the rest of the particles, is applied to the sticky-hard-sphere
fluid to obtain its equation of state in the so-called chemical-potential route
( route). As a consistency test, the results for one-dimensional sticky
particles are shown to be exact. Results corresponding to the three-dimensional
case (Baxter's model) are derived within the Percus-Yevick approximation by
using different prescriptions for the dependence of the interaction potential
of the extra particle on the coupling parameter. The critical point and the
coexistence curve of the gas-liquid phase transition are obtained in the
route and compared with predictions from other thermodynamics routes and from
computer simulations. The results show that the route yields a general
better description than the virial, energy, compressibility, and
zero-separation routes.Comment: 13 pages, 7 figures; v2: Results from the zero-separation route have
been adde
Exact solution of the Percus-Yevick integral equation for fluid mixtures of hard hyperspheres
Structural and thermodynamic properties of multicomponent hard-sphere fluids
at odd dimensions have recently been derived in the framework of the rational
function approximation (RFA) [Rohrmann and Santos, Phys. Rev. E \textbf{83},
011201 (2011)]. It is demonstrated here that the RFA technique yields the exact
solution of the Percus-Yevick (PY) closure to the Ornstein-Zernike (OZ)
equation for binary mixtures at arbitrary odd dimensions. The proof relies
mainly on the Fourier transforms of the direct correlation
functions defined by the OZ relation. From the analysis of the poles of
we show that the direct correlation functions evaluated by
the RFA method vanish outside the hard core, as required by the PY theory.Comment: 6 page
Chemical-potential route for multicomponent fluids
The chemical potentials of multicomponent fluids are derived in terms of the
pair correlation functions for arbitrary number of components, interaction
potentials, and dimensionality. The formally exact result is particularized to
hard-sphere mixtures with zero or positive nonadditivity. As a simple
application, the chemical potentials of three-dimensional additive hard-sphere
mixtures are derived from the Percus-Yevick theory and the associated equation
of state is obtained. This Percus-Yevick chemical-route equation of state is
shown to be more accurate than the virial equation of state. An interpolation
between the chemical-potential and compressibility routes exhibits a better
performance than the well-known Boubl\'ik-Mansoori-Carnahan-Starling-Leland
equation of state.Comment: 9 pages, 1 figure; v2: minor change
Hydrogen model atmospheres for white dwarf stars
We present a detailed calculation of model atmospheres for DA white dwarfs.
Our atmosphere code solves the atmosphere structure in local thermodynamic
equilibrium with a standard partial linearization technique, which takes into
account the energy transfer by radiation and convection. This code incorporates
recent improved and extended data base of collision induced absorption by
molecular hydrogen. We analyse the thermodynamic structure and emergent flux of
atmospheres in a range 2500 < Teff < 60000$ K and 6.5 < log g < 9.0. Bolometric
correction and colour indices are provided for a subsample of the model grid.
Comparison of the colours is made with published observational material and
results of other recent model calculations. Motivated by the increasing
interest on helium core white dwarfs, we analyse the photometric
characteristics of these stars during their cooling, using evolutionary models
recently available. Effective temperatures, surface gravities, masses and ages
have been determined for some helium core white dwarf candidates, and their
possible binary nature is briefly discussed.Comment: 12 pages, 13 figures. Accepted for publication in MNRA
Equation of state for five-dimensional hyperspheres from the chemical-potential route
We use the Percus-Yevick approach in the chemical-potential route to evaluate
the equation of state of hard hyperspheres in five dimensions. The evaluation
requires the derivation of an analytical expression for the contact value of
the pair distribution function between particles of the bulk fluid and a solute
particle with arbitrary size. The equation of state is compared with those
obtained from the conventional virial and compressibility thermodynamic routes
and the associated virial coefficients are computed. The pressure calculated
from all routes is exact up to third density order, but it deviates with
respect to simulation data as density increases, the compressibility and the
chemical-potential routes exhibiting smaller deviations than the virial route.
Accurate linear interpolations between the compressibility route and either the
chemical-potential route or the virial one are constructed.Comment: 9 pages, 6 figures; v2: Change in one referenc
Evolution and colours of helium-core white dwarf stars: the case of low metallicity progenitors
The present work is designed to explore the evolution of helium-core white
dwarf (HeWD) stars for the case of metallicities much lower than the solar one
(Z=0.001 and Z=0.0002). Evolution is followed in a self-consistent way with the
predictions of detalied and new non-grey atmospheres, time-dependent element
diffusion and the history of the white dwarf progenitor. Reliable initial
models for low mass HeWDs are obtained by applying mass loss rates to a 1msun
stellar model. The loss of angular momentum caused by gravitational wave
emission and magnetic stellar wind braking are considered. Model atmospheres,
based on a detailed treatment of the microphysics entering the WD atmosphere
enable us to provide accurate colours and magnitudes at both early and advanced
evolutionary stages. We find that most of our evolutionary sequences experience
several episodes of hydrogen thermonuclear flashes. In particular, the lower
the metallicity, the larger the minimum stellar mass for the occurrence fo
flashes induced by CNO cycle reactions. The existence of a mass-threshold for
the occurrence of diffusion-induced CNO flashes leadss to a marked dichotomy in
the age of our models. Another finding of this study is that our HeWD models
experience unstable hydrogen burning via PP nuclear reactions at late cooling
stages as a result of hydrogen chemically diffusing inwards. Such PP flashes
take place in models with very low metal content. We also find that models
experiencing CNO flashes exhibit a pronouncede turn-off in most of their
colours at M_V=16 approximately. Finally, colour-magnitude diagrams for our
models are presented and compared with recent observational data of HeWD
candidates in the globular clusters NGC 6397 and 47 Tucanae.Comment: 14 pages, 10 figures. Accepted for publication in MNRA
Outer boundary conditions for evolving cool white dwarfs
White dwarf evolution is essentially a gravothermal cooling process,
which,for cool white dwarfs, sensitively depends on the treatment of the outer
boundary conditions. We provide detailed outer boundary conditions appropriate
for computing the evolution of cool white dwarfs employing detailed non-gray
model atmospheres for pure H composition. We also explore the impact on the
white dwarf cooling times of different assumptions for energy transfer in the
atmosphere of cool white dwarfs. Detailed non-gray model atmospheres are
computed taken into account non-ideal effects in the gas equation of state and
chemical equilibrium, collision-induced absorption from molecules, and the
Lyman alpha quasi-molecular opacity. Our results show that the use of detailed
outer boundary conditions becomes relevant for effective temperatures lower
than 5800 and 6100K for sequences with 0.60 and 0.90 M_sun, respectively.
Detailed model atmospheres predict ages that are up to approx 10% shorter at
log L/L_sun=-4 when compared with the ages derived using Eddington-like
approximations at tau_Ross=2/3. We also analyze the effects of various
assumptions and physical processes of relevance in the calculation of outer
boundary conditions. In particular, we find that the Ly_alpha red wing
absorption does not affect substantially the evolution of white dwarfs. White
dwarf cooling timescales are sensitive to the surface boundary conditions for
T_eff < 6000K. Interestingly enough, non-gray effects have little consequences
on these cooling times at observable luminosities. In fact, collision-induced
absorption processes, which significantly affect the spectra and colors of old
white dwarfs with hydrogen-rich atmospheres, have not noticeable effects in
their cooling rates, except throughout the Rosseland mean opacity.Comment: 6 pages, 9 figures, to be published in Astronomy and Astrophysic
- …
