487 research outputs found

    AN INVERSE MARKOV-CHEBYSHEV INEQUALITY

    Get PDF
    Suppose that X is an arbitrary nonnegative random variable with three given moments E(X), E(X2) and E(X3). Lower bounds will be given for the tail probabilities P(x > a)

    An Eigenvector-Based Test for Local Stationarity Applied to Array Processing

    Get PDF
    In sonar array processing, a challenging problem is the estimation of the data covariance matrix in the presence of moving targets in the water column, since the time interval of data local stationarity is limited. This work describes an eigenvector-based method for proper data segmentation into intervals that exhibit local stationarity, providing data-driven higher bounds for the number of snapshots available for computation of time-varying sample covariance matrices. Application of the test is illustrated with simulated data in a horizontal array for the detection of a quiet source in the presence of a loud interferer

    Liposome Co-sedimentation and Co-flotation Assays to Study Lipid-Protein Interactions

    Get PDF
    A large proportion of proteins are expected to interact with cellular membranes to carry out their physiological functions in processes such as membrane transport, morphogenesis, cytoskeletal organization, and signal transduction. The recruitment of proteins at the membrane-cytoplasm interface and their activities are precisely regulated by phosphoinositides, which are negatively charged phospholipids found on the cytoplasmic leaflet of cellular membranes and play critical roles in membrane homeostasis and cellular signaling. Thus, it is important to reveal which proteins interact with phosphoinositides and to elucidate the underlying mechanisms. Here, we present two standard in vitro methods, liposome co-sedimentation and co-flotation assays, to study lipid-protein interactions. Liposomes can mimic various biological membranes in these assays because their lipid compositions and concentrations can be varied. Thus, in addition to mechanisms of lipid-protein interactions, these methods provide information on the possible specificities of proteins toward certain lipids such as specific phosphoinositide species and can hence shed light on the roles of membrane interactions on the functions of membrane-associated proteins.Peer reviewe

    Propagation of AC magnetic field through high-T<SUB>c</SUB> coatings

    Get PDF
    Studies on the propagation of AC magnetic field through plasma-sprayed superconducting Y1Ba2Cu3O7-x coatings show that complete shielding is achieved up to a certain critical magnetic field strength H0. Increase in the thickness or Jc of the specimen increases the H0 value. Flux-trapping occurs in the specimen at high frequencies and the frequency at which it occurs increases with increase in specimen Jc

    Eutectic Colony Formation: A Stability Analysis

    Full text link
    Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase cells commonly referred to as `eutectic colonies'. We extend the stability analysis of Datye and Langer for a binary eutectic to include the effect of a ternary impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with an effective surface tension that depends on the geometry of the lamellar interface and, non-trivially, on interlamellar diffusion. A qualitatively new aspect of this instability is the occurence of oscillatory modes due to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides additional physical insights into the nature of the instability and a simple means to calculate an approximate stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscillatory instability that is already present at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes; references adde

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Novel Coronin7 interactions with Cdc42 and N-WASP regulate actin organization and Golgi morphology

    Get PDF
    YesThe contribution of the actin cytoskeleton to the unique architecture of the Golgi complex is manifold. An important player in this process is Coronin7 (CRN7), a Golgi-resident protein that stabilizes F-actin assembly at the trans-Golgi network (TGN) thereby facilitating anterograde trafficking. Here, we establish that CRN7-mediated association of F-actin with the Golgi apparatus is distinctly modulated via the small Rho GTPase Cdc42 and N-WASP. We identify N-WASP as a novel interaction partner of CRN7 and demonstrate that CRN7 restricts spurious F-actin reorganizations by repressing N-WASP ‘hyperactivity’ upon constitutive Cdc42 activation. Loss of CRN7 leads to increased cellular F-actin content and causes a concomitant disruption of the Golgi structure. CRN7 harbours a Cdc42- and Rac-interactive binding (CRIB) motif in its tandem β-propellers and binds selectively to GDP-bound Cdc42N17 mutant. We speculate that CRN7 can act as a cofactor for active Cdc42 generation. Mutation of CRIB motif residues that abrogate Cdc42 binding to CRN7 also fail to rescue the cellular defects in fibroblasts derived from CRN7 KO mice. Cdc42N17 overexpression partially rescued the KO phenotypes whereas N-WASP overexpression failed to do so. We conclude that CRN7 spatiotemporally influences F-actin organization and Golgi integrity in a Cdc42- and N-WASP-dependent manner.This work was supported by SFB 670 and DFG NO 113/22. K.B. was supported by a fellowship from the NRW International Graduate School “From Embryo to Old Age: the Cell Biology and Genetics of Health and Disease” (IGSDHD), Cologne

    Eutectic colony formation: A phase field study

    Full text link
    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity and we investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamella grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
    corecore