24,475 research outputs found
Vacuum-stripped silicone binder for thermal-control paint
Silicone elastomer is placed in evacuating system, heated to 160 C and held at this temperature for 24 hours. Elastomer is then cooled to room temperature in vacuum, producing upgraded, low outgassing polymer of increased molecular weight
The Response of Normal Shocks in Diffusers
The frequency response of a normal shock in a diverging channel is calculated for application to problems of
pressure oscillations in ramjet engines. Two limits of a linearized analysis arc discussed: one represents isentropic
flow on both sides of a shock wave; the other may be a crude appr'l'I;imation to the influence of flow separation
induced hy the wave. Numerical results arc given, and the influences of the shock wave on oscillations in the
engine are discus,ed
Modeling pressure oscillations in Ramjets
Pressure oscillations in ramjet engines are approximated as one-dimensional motions and treated within linear acoustics. The exhaust nozzle is represented by the admittance function for a short choked nozzle. New results have been obtained for the quasi-steady response of a
normal shock wave in the diffuser. Acoustic fields in the inlet region and in the combustion chamber are matched to provide an analytical expression of the criterion for linear stability. Combustion processes are accommodated but not treated in detail. As examples, data are discussed
for two liquid-fueled engines, one having axial dump and one having side dumps
A Rigorous Path Integral for Supersymmetric Quantum Mechanics and the Heat Kernel
In a rigorous construction of the path integral for supersymmetric quantum
mechanics on a Riemann manifold, based on B\"ar and Pf\"affle's use of
piecewise geodesic paths, the kernel of the time evolution operator is the heat
kernel for the Laplacian on forms. The path integral is approximated by the
integral of a form on the space of piecewise geodesic paths which is the
pullback by a natural section of Mathai and Quillen's Thom form of a bundle
over this space.
In the case of closed paths, the bundle is the tangent space to the space of
geodesic paths, and the integral of this form passes in the limit to the
supertrace of the heat kernel.Comment: 14 pages, LaTeX, no fig
A role in world affairs at M.U.
Caption title.Page 11: last column corrected by mounted label
Optimizing spread dynamics on graphs by message passing
Cascade processes are responsible for many important phenomena in natural and
social sciences. Simple models of irreversible dynamics on graphs, in which
nodes activate depending on the state of their neighbors, have been
successfully applied to describe cascades in a large variety of contexts. Over
the last decades, many efforts have been devoted to understand the typical
behaviour of the cascades arising from initial conditions extracted at random
from some given ensemble. However, the problem of optimizing the trajectory of
the system, i.e. of identifying appropriate initial conditions to maximize (or
minimize) the final number of active nodes, is still considered to be
practically intractable, with the only exception of models that satisfy a sort
of diminishing returns property called submodularity. Submodular models can be
approximately solved by means of greedy strategies, but by definition they lack
cooperative characteristics which are fundamental in many real systems. Here we
introduce an efficient algorithm based on statistical physics for the
optimization of trajectories in cascade processes on graphs. We show that for a
wide class of irreversible dynamics, even in the absence of submodularity, the
spread optimization problem can be solved efficiently on large networks.
Analytic and algorithmic results on random graphs are complemented by the
solution of the spread maximization problem on a real-world network (the
Epinions consumer reviews network).Comment: Replacement for "The Spread Optimization Problem
TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
Transverse-momentum-dependent distributions (TMDs) are central in high-energy
physics from both theoretical and phenomenological points of view. In this
manual we introduce the library, TMDlib, of fits and parameterisations for
transverse-momentum-dependent parton distribution functions (TMD PDFs) and
fragmentation functions (TMD FFs) together with an online plotting tool,
TMDplotter. We provide a description of the program components and of the
different physical frameworks the user can access via the available
parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde
Computer mapping of LANDSAT data for environmental applications
The author has identified the following significant results. Land cover overlays and maps produced from LANDSAT are providing information on existing land use and resources throughout the 208 study area. The overlays are being used to delineate drainage areas of a predominant land cover type. Information on cover type is also being combined with other pertinent data to develop estimates of sediment and nutrients flows from the drainage area. The LANDSAT inventory of present land cover together with population projects is providing a basis for developing maps of anticipated land use patterns required to evaluate impact on water quality which may result from these patterns. Overlays of forest types were useful for defining wildlife habitat and vegetational resources in the region. LANDSAT data and computer assisted interpretation was found to be a rapid cost effective procedure for inventorying land cover on a regional basis. The entire 208 inventory which include acquisition of ground truth, LANDSAT tapes, computer processing, and production of overlays and coded tapes was completed within a period of 2 months at a cost of about 0.6 cents per acre, a significant improvement in time and cost over conventional photointerpretation and mapping techniques
The CCA Anticodon Specifies Separate Functions Inside and Outside Translation in \u3cem\u3eBacillus cereus\u3c/em\u3e
Bacillus cereus 14579 encodes two tRNAs with the CCA anticodon, tRNATrp and tRNAOther. tRNATrp was separately aminoacylated by two enzymes, TrpRS1 and TrpRS2, which share only 34% similarity and display different catalytic capacities and specificities. TrpRS1 was 18-fold more proficient at aminoacylating tRNATrp with Trp, while TrpRS2 more efficiently utilizes the Trp analog 5-hydroxy Trp. tRNAOther was not aminoacylated by either TrpRS but instead by the combined activity of LysRS1 and LysRS2, which recognized sequence elements absent from tRNATrp. Polysomes were found to contain tRNATrp, consistent with its role in translation, but not tRNAOther suggesting a function outside protein synthesis. Regulation of the genes encoding TrpRS1 and TrpRS2 (trpS1 and trpS2) is dependent on riboswitch-mediated recognition of the CCA anticodon, and the role of tRNAOther in this process was investigated. Deletion of tRNAOther led to up to a 50 fold drop in trpS1 expression, which resulted in the loss of differential regulation of the trpS1 and trpS2 genes in stationary phase. These findings reveal that sequence-specific interactions with a tRNA anticodon can be confined to processes outside translation, suggesting a means by which such RNAs may evolve non-coding functions
Recommended from our members
On the Role of Dewetting Transitions in Host-Guest Binding Free Energy Calculations.
We use thermodynamic integration (TI) and explicit solvent molecular dynamics (MD) simulation to estimate the absolute free energy of host-guest binding. In the unbound state, water molecules visit all of the internally accessible volume of the host, which is fully hydrated on all sides. Upon binding of an apolar guest, the toroidal host cavity is fully dehydrated; thus, during the intermediate λ stages along the integration, the hydration of the host fluctuates between hydrated and dehydrated states. Estimating free energies by TI can be especially challenging when there is a considerable difference in hydration between the two states of interest. We investigate these aspects using the popular TIP3P and TIP4P water models. TI free energy estimates through MD largely depend on water-related interactions, and water dynamics significantly affect the convergence of binding free energy calculations. Our results indicate that wetting/dewetting transitions play a major role in slowing the convergence of free energy estimation. We employ two alternative approaches-one analytical and the other empirically based on actual MD sampling-to correct for the standard state free energy. This correction is sizable (up to 4 kcal/mol), and the two approaches provide corrections that differ by about 1 kcal/mol. For the system considered here, the TIP4P water model combined with an analytical correction for the standard state free energy provides higher overall accuracy. This observation might be transferable to other systems in which water-related contributions dominate the binding process
- …