31,491 research outputs found
Fast sampling control of a class of differential linear repetitive processes
Repetitive processes are a distinct class of 2D linear systems of practical and theoretical interest. Most of the available control theory for them is for the case of linear dynamics and focuses on systems theoretic properties such as stability and controllability/observability. This paper uses an extension of standard, or 1D, feedback control schemes to control a physically relevant sub-class of these processes
Stability Tests for a Class of 2D Continuous-Discrete Linear Systems with Dynamic Boundary Conditions
Repetitive processes are a distinct class of 2D systems of both practical and theoretical interest. Their essential characteristic is repeated sweeps, termed passes, through a set of dynamics defined over a finite duration with explicit interaction between the outputs, or pass profiles, produced as the system evolves. Experience has shown that these processes cannot be studied/controlled by direct application of existing theory (in all but a few very restrictive special cases). This fact, and the growing list of applications areas, has prompted an on-going research programme into the development of a 'mature' systems theory for these processes for onward translation into reliable generally applicable controller design algorithms. This paper develops stability tests for a sub-class of so-called differential linear repetitive processes in the presence of a general set of initial conditions, where it is known that the structure of these conditions is critical to their stability properties
Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars
We propose that the observed misalignment between extra-solar planets and
their hot host stars can be explained by angular momentum transport within the
host star. Observations have shown that this misalignment is preferentially
around hot stars, which have convective cores and extended radiative envelopes.
This situation is amenable to substantial angular momentum transport by
internal gravity waves (IGW) generated at the convective-radiative interface.
Here we present numerical simulations of this process and show that IGW can
modulate the surface rotation of the star. With these two- dimensional
simulations we show that IGW could explain the retrograde orbits observed in
systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity
objects will await future three- dimensional simulations. We note that these
results also imply that individual massive stars should show temporal
variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ
Decoupling and iterative approaches to the control of discrete linear repetitive processes
This paper reports new results on the analysis and control of discrete linear repetitive processes which are a distinct class of 2D discrete linear systems of both systems theoretic and applications interest. In particular, we first propose an extension to the basic state-space model to include a coupling term previously neglected but which arises in some applications and then proceed to show how computationally efficient control laws can be designed for this new model
On controllability and control laws for discrete linear repetitive processes
Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent directions) of both systems theoretic and applications interest. They cannot be controlled by the direct extension of existing techniques from either standard (termed 1D here) or 2D systems theory. This article develops significant new results on the relationships between one physically motivated concept of controllability for the so-called discrete linear repetitive processes and the structure and design of control laws, including the case when disturbances are present
Development of polymer network of phenolic and epoxies resins mixed with linseed oil: pilot study
Epoxy resin was mixed with phenolic resins in different percentages by weight. Composite 40/60 means the proportion by weight of epoxy resin is 40 percent. It was found that only composites 50/50 and 40/60 could be cured in ambient conditions. Dynamic mechanical analysis showed that only these two composites form interpenetrating polymer network. The addition of linseed oil to the two resins results also in the formation of interpenetrating network irrespective of proportion by weight of the resins; the mechanical properties will only be better when the percentage by weight of epoxy resin is higher; the aim of reducing cost and at the same time maintaining the mechanical properties cannot be fully achieved because epoxy resin is much more expensive than its counterpart
State Funded Marketing and Promotional Activities to Support a State's Winery Business; Are There Economic Returns?: A Case study using Texas Senate Bill 1370's support of the Texas Wine Industry
Texas wineries responded to a survey regarding their participation in wine marketing activities, annual changes in gross sales and level of sales growth they attribute to TDAâs support and if these funds create positive economic impacts to their winery. The response rate was 53 of the 93 registered wineries or a 57 percent response rate. Senate Bill 1370 funds allocate annually 725,000 and the normal funding of 975,000 in annual support to grow economic value. The most often utilized promotional activity is promotional materials and attending TDA supported wine events. Ninety-two percent of Texas wineries recognize an increase in awareness for the Texas wine industry and attribute 49 percent of the increase to state marketing efforts. A portion of TDA marketing funds were directed towards supporting wine events in Texas as they attract large numbers of consumers and allow promotional opportunities. One result found that 68 percent of consumers reported the event encouraged them to buy more Texas wine. Annual Economic Impact Results from supported marketing activities are estimated to create 1 of funding in direct sales increases, 1 of funding in economic impact of increases in sales and 1 of funding in value added impacts (based on IMPLAN Type II Economic Multiplier values). Annual Economic Impact Results from all funding activities are 1 of funding of total direct sales increases, 1 of funding in economic impacts of increases in sales and 1 of funding in valued added impacts (based on IMPLAN Type II Economic Multiplier values). It is apparent that both direct and indirect economic results are positive returns to program funding and create economic growth in local economies.Texas Wine, Wine Economics, State Commodity Support, State Agricultural Marketing, State Commodity Marketing, Agribusiness, Agricultural and Food Policy, Marketing,
Classification and reduction of pilot error
Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses
Classifying and monitoring water quality by use of satellite imagery
A technique in which LANDSAT measurements from very clear lakes are subtracted from measurements from other lakes in order to remove atmospheric and surface noise effects to obtain a residual signal dependent only on the material suspended in the water is described. This residual signal is used by the Multispectral Data Analysis System as a basis for producing color categorized imagery showing lakes by type and concentration of suspended material. Several hundred lakes in the Madison and Spooner, Wisconsin area were categorized for tannin or non-tannin waters and for the degree of algae, silt, weeds, and bottom effects
Photometric measurements of surface characteristics of echo i satellite final report
Photometric measurements of Echo I satellite surface characteristic
- âŠ