420 research outputs found

    Effects of User Age on Smartphone and Tablet Use, Measured with an Eye-Tracker via Fixation Duration, Scan-Path Duration, and Saccades Proportion

    Get PDF
    The design of user interfaces plays an important role in human computer interaction, especially for smartphones and tablet devices. It is very important to consider the interface design of smartphones for elderly people in order for them to benefit from the variety applications on such devices. The aim of this study is to investigate the effects of user age as well as screen size on smartphone/tablet use. We evaluated the usability of smartphone interfaces for three different age groups: elderly age group (60+ years), middle age group (40-59 years) and younger age group (20-39 years). The evaluation is performed using three different screen sizes of smartphone and tablet devices: 3.2", 7", and 10.1" respectively. An eye-tracker device was employed to obtain three metrics: fixation duration, scan-path duration, and saccades amplitude. Two hypothesis were considered. First, elderly users will have both local and global processing difficulties on smartphone/tablet use than other age groups. Second, all user age groups will be influenced by screen sizes; small screen size will have smaller saccades proportion indicating uneasy interface browsing compared to large screen size. All these results have been statistically evaluated using 2-way ANOVA

    On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees

    Full text link
    In this paper, flow models of networks without congestion control are considered. Users generate data transfers according to some Poisson processes and transmit corresponding packet at a fixed rate equal to their access rate until the entire document is received at the destination; some erasure codes are used to make the transmission robust to packet losses. We study the stability of the stochastic process representing the number of active flows in two particular cases: linear networks and upstream trees. For the case of linear networks, we notably use fluid limits and an interesting phenomenon of "time scale separation" occurs. Bounds on the stability region of linear networks are given. For the case of upstream trees, underlying monotonic properties are used. Finally, the asymptotic stability of those processes is analyzed when the access rate of the users decreases to 0. An appropriate scaling is introduced and used to prove that the stability region of those networks is asymptotically maximized

    Demographic noise can reverse the direction of deterministic selection

    Get PDF
    Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviours will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favouring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by both the deterministic analysis as well as standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analogue to r-K theory, by which small populations can evolve to higher densities in the absence of disturbance.Comment: 25 pages, 12 figure

    Citizen Desires, Policy Outcomes, and Community Control

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68810/2/10.1177_107808747200800107.pd

    Optimizing tuning masses for helicopter rotor blade vibration reduction including computed airloads and comparison with test data

    Get PDF
    The development and validation of an optimization procedure to systematically place tuning masses along a rotor blade span to minimize vibratory loads are described. The masses and their corresponding locations are the design variables that are manipulated to reduce the harmonics of hub shear for a four-bladed rotor system without adding a large mass penalty. The procedure incorporates a comprehensive helicopter analysis to calculate the airloads. Predicting changes in airloads due to changes in design variables is an important feature of this research. The procedure was applied to a one-sixth, Mach-scaled rotor blade model to place three masses and then again to place six masses. In both cases the added mass was able to achieve significant reductions in the hub shear. In addition, the procedure was applied to place a single mass of fixed value on a blade model to reduce the hub shear for three flight conditions. The analytical results were compared to experimental data from a wind tunnel test performed in the Langley Transonic Dynamics Tunnel. The correlation of the mass location was good and the trend of the mass location with respect to flight speed was predicted fairly well. However, it was noted that the analysis was not entirely successful at predicting the absolute magnitudes of the fixed system loads

    Interpreting Helioseismic Structure Inversion Results of Solar Active Regions

    Full text link
    Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the "sound-speed" difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R_sun and that the strengths of magnetic-field effects at the surface and in the deeper (r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa. We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.Comment: Accepted for publication in Solar Physic

    Toward a Theory of Innovation

    Full text link
    The purpose of this article is to eliminate further conceptual obstacles to the develop ment of a workable theory of innovation and to move toward a better theoretic statement. The approach to overcoming the conceptual problems centers primarily around four ideas: (1) building a theory around the "innovation decision" as the unit of analysis, rather than either innovations or adopters: (2) lifting the level of general ity of independent variables so that a great deal of statistical interaction is avoided; (3) splitting the act of innovation into two stages, diffusion and adoption, to eliminate the confounding effects of time of awareness in studies of innovation; (4) introducing the idea of a "fair-trial point" into the conceptualization of innovation, solving sev eral additional problems at once.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68286/2/10.1177_009539977901000401.pd

    Flicker Noise Induced by Dynamic Impurities in a Quantum Point Contact

    Full text link
    We calculate low-frequency noise (LFN) in a quantum point contact (QPC) which is electrostatically defined in a 2D electron gas of a GaAs-AlGaAs heterostructure. The conventional source of LFN in such systems are scattering potentials fluctuating in time acting upon injected electrons. One can discriminate between potentials of different origin -- noise may be caused by the externally applied gate- and source-drain voltages, the motion of defects with internal degrees of freedom close to the channel, electrons hopping between localized states in the doped region, etc. In the present study we propose a model of LFN based upon the assumption that there are many dynamic defects in the surrounding of a QPC. A general expression for the time-dependent current-current correlation function is derived and applied to a QPC with quantized conductance. It is shown that the level of LFN is significantly different at and between the steps in a plot of the conductance vs. gate voltage. On the plateaus, the level of noise is found to be low and strongly model-dependent. At the steps, LFN is much larger and only weakly model-dependent. As long as the system is biased to be at a fixed position relative the conductance step,Comment: 26 revtex APR 94-4

    Biological and geophysical feedbacks with fire in the Earth system

    Get PDF
    Roughly 3% of the Earth's land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences
    • …
    corecore