4,330 research outputs found

    Calibration of the EDGES High-Band Receiver to Observe the Global 21-cm Signature from the Epoch of Reionization

    Get PDF
    The EDGES High-Band experiment aims to detect the sky-average brightness temperature of the 2121-cm signal from the Epoch of Reionization (EoR) in the redshift range 14.8≳z≳6.514.8 \gtrsim z \gtrsim 6.5. To probe this redshifted signal, EDGES High-Band conducts single-antenna measurements in the frequency range 90βˆ’19090-190 MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper, we describe the current strategy for calibration of the EDGES High-Band receiver and report calibration results for the instrument used in the 2015βˆ’20162015-2016 observational campaign. We propagate uncertainties in the receiver calibration measurements to the antenna temperature using a Monte Carlo approach. We define a performance objective of 11~mK residual RMS after modeling foreground subtraction from a fiducial temperature spectrum using a five-term polynomial. Most of the calibration uncertainties yield residuals of 11~mK or less at 95%95\% confidence. However, current uncertainties in the antenna and receiver reflection coefficients can lead to residuals of up to 2020 mK even in low-foreground sky regions. These dominant residuals could be reduced by 1) improving the accuracy in reflection measurements, especially their phase 2) improving the impedance match at the antenna-receiver interface, and 3) decreasing the changes with frequency of the antenna reflection phase.Comment: Updated to match version accepted by Ap

    Results from EDGES High-Band: II. Constraints on Parameters of Early Galaxies

    Full text link
    We use the sky-average spectrum measured by EDGES High-Band (90βˆ’19090-190 MHz) to constrain parameters of early galaxies independent of the absorption feature at 7878~MHz reported by Bowman et al. (2018). These parameters represent traditional models of cosmic dawn and the epoch of reionization produced with the 21cmFAST simulation code (Mesinger & Furlanetto 2007, Mesinger et al. 2011). The parameters considered are: (1) the UV ionizing efficiency (ΞΆ\zeta), (2) minimum halo virial temperature hosting efficient star-forming galaxies (TvirminT^{\rm min}_{\rm vir}), (3) integrated soft-band X-ray luminosity (LX < 2 keV/SFRL_{\rm X\,<\,2\,keV}/{\rm SFR}), and (4) minimum X-ray energy escaping the first galaxies (E0E_{0}), corresponding to a typical HI{\rm \scriptstyle I} column density for attenuation through the interstellar medium. The High-Band spectrum disfavors high values of TvirminT^{\rm min}_{\rm vir} and ΞΆ\zeta, which correspond to signals with late absorption troughs and sharp reionization transitions. It also disfavors intermediate values of LX < 2 keV/SFRL_{\rm X\,<\,2\,keV}/{\rm SFR}, which produce relatively deep and narrow troughs within the band. Specifically, we rule out 39.4<log⁑10(LX < 2 keV/SFR)<39.839.4<\log_{10}\left(L_{\rm X\,<\,2\,keV}/{\rm SFR}\right)<39.8 (95%95\% C.L.). We then combine the EDGES High-Band data with constraints on the electron scattering optical depth from Planck and the hydrogen neutral fraction from high-zz quasars. This produces a lower degeneracy between ΞΆ\zeta and TvirminT^{\rm min}_{\rm vir} than that reported in Greig & Mesinger (2017a) using the Planck and quasar constraints alone. Our main result in this combined analysis is the estimate 4.54.5~≀log⁑10(Tvirmin/K)≀\leq \log_{10}\left(T^{\rm min}_{\rm vir}/\rm K\right)\leq~5.75.7 (95%95\% C.L.). We leave for future work the evaluation of 2121~cm models using simultaneously data from EDGES Low- and High-Band.Comment: Accepted in Ap

    The impact of spatial wind variations on freshwater transport by the Alaska Coastal Current

    Get PDF
    The Alaska Coastal Current (ACC) is located in a region with prevailing downwelling-favorable winds, flows over a long stretch of coastline (over 2000 km), and is driven by multiple sources of freshwater discharge totaling 24000 m3 s–1 along its length. Using the Regional Ocean Modeling System (ROMS) we attempt to determine how spatially variable winds affect the downstream transport of freshwater along a long coastline with nearly continuous sources of freshwater. The model domain represents a fraction of the ACC region and periodic boundary conditions are applied to allow propagation of the buoyant flow from upstream. The model is forced by multiple freshwater sources in the central part of the domain and by both constant and spatially-varying, predominantly downwelling-favorable, winds. Freshwater flux gain in the coastal current (as opposed to spreading offshore) is calculated by taking a 30-day averaged difference between freshwater fluxes at the downstream and upstream edges of the buoyancy forcing region. Model runs are split into two categories: relatively high gains (50 – 60% of total discharge) were observed under moderate wind stress (∼0.05 Pa) or no wind conditions while lower gains (35– 45%) were observed under light average wind stresses (∼0.025 Pa), especially when wind varied alongshore. The offshore freshwater transport is eddy-driven and is enhanced in the areas of converging wind forcing. Eddy generation is associated with the wind-induced deepening of the buoyant layer near the coast. When the surface boundary layer is thin under light wind conditions, this deepening translates into enhanced vertical shear of the alongshore current through the thermal wind balance. Reversal of alongshore wind to upwelling-favorable wind effectively blocks the downstream freshwater transport and spreads the buoyant layer offshore
    • …
    corecore