3,989 research outputs found
Mating disruption of citrus leafminer mediated by a noncompetitive mechanism at a remarkably low pheromone release rate.
The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is a worldwide pest of citrus. A season-long investigation was conducted that evaluated mating disruption for this pest. Effective disruption of the male P. citrella orientation to pheromone traps (98%) and reduced flush infestation by larvae was achieved for 221 d with two deployments of a 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal/(Z,Z)-7,11-hexadecadienal at a remarkably low rate of 1.5 g active ingredient (AI)/ha per deployment. To gain insight into the mechanism that mediates the disruption of P. citrella, male moth catch was quantified in replicated plots of citrus treated with varying densities of pheromone dispensers. The densities of septum dispensers compared were: 0 (0/ha, 0.0 g AI/ha), 0.2 (one every fifth tree or 35/ha, 0.05 g AI/ha), 1 (215/ha, 0.29 g AI/ha), and 5 per tree (1,100/ha, 1.5 g AI/ha). Profile analysis by previously published mathematical methods matched predictions of noncompetitive mating disruption. Behavioral observations of male P. citrella in the field revealed that males did not approach mating disruption dispensers in any of the dispenser density treatments. The current report presents the first set of profile analyses combined with direct behavioral observations consistent with previously published theoretical predictions for a noncompetitive mechanism of mating disruption. The results suggest that disruption of P. citrella should be effective even at high population densities given the density-independent nature of disruption for this species and the remarkably low rate of pheromone per hectare required for efficacy
Modeling the adoption and use of social media by nonprofit organizations
This study examines what drives organizational adoption and use of social
media through a model built around four key factors - strategy, capacity,
governance, and environment. Using Twitter, Facebook, and other data on 100
large US nonprofit organizations, the model is employed to examine the
determinants of three key facets of social media utilization: 1) adoption, 2)
frequency of use, and 3) dialogue. We find that organizational strategies,
capacities, governance features, and external pressures all play a part in
these social media adoption and utilization outcomes. Through its integrated,
multi-disciplinary theoretical perspective, this study thus helps foster
understanding of which types of organizations are able and willing to adopt and
juggle multiple social media accounts, to use those accounts to communicate
more frequently with their external publics, and to build relationships with
those publics through the sending of dialogic messages.Comment: Seungahn Nah and Gregory D. Saxton. (in press). Modeling the adoption
and use of social media by nonprofit organizations. New Media & Society,
forthcomin
Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major
To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic “cutoff” value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite
Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet
Skin cancer, a major form of cancer, is a critical public health problem with
123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma
cases worldwide each year. The leading cause of skin cancer is high exposure of
skin cells to UV radiation, which can damage the DNA inside skin cells leading
to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed
visually employing clinical screening, a biopsy, dermoscopic analysis, and
histopathological examination. It has been demonstrated that the dermoscopic
analysis in the hands of inexperienced dermatologists may cause a reduction in
diagnostic accuracy. Early detection and screening of skin cancer have the
potential to reduce mortality and morbidity. Previous studies have shown Deep
Learning ability to perform better than human experts in several visual
recognition tasks. In this paper, we propose an efficient seven-way automated
multi-class skin cancer classification system having performance comparable
with expert dermatologists. We used a pretrained MobileNet model to train over
HAM10000 dataset using transfer learning. The model classifies skin lesion
image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36
percent and top3 accuracy of 95.34 percent. The weighted average of precision,
recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The
model has been deployed as a web application for public use at
(https://saketchaturvedi.github.io). This fast, expansible method holds the
potential for substantial clinical impact, including broadening the scope of
primary care practice and augmenting clinical decision-making for dermatology
specialists.Comment: This is a pre-copyedited version of a contribution published in
Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R.,
Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The
definitive authentication version is available online via
https://doi.org/10.1007/978-981-15-3383-9_1
Estrogenic mechanisms and cardiac responses following early life exposure to Bisphenol A (BPA) and Its metabolite 4-Methyl-2,4-bis(p -hydroxyphenyl)pent-1-ene (MBP) in zebrafish
This is the author accepted manuscriptEnvironmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.Natural Environment Research Council (NERC)Biotechnology & Biological Sciences Research Council (BBSRC)Biotechnology & Biological Sciences Research Council (BBSRC
Promastigote secretory gel from natural and unnatural sand fly vectors exacerbate Leishmania major and Leishmania tropica cutaneous leishmaniasis in mice.
Leishmania rely heavily on glycans to complete their digenetic life cycle in both mammalian and phlebotomine sand fly hosts. Leishmania promastigotes secrete a proteophosphoglycan-rich gel (Promastigote Secretory Gel, PSG) that is regurgitated during transmission and can exacerbate infection in the skin. Here we explored the role of PSG from natural Leishmania-sand fly vector combinations by obtaining PSG from Leishmania (L.) major-infected Phlebotomus (P.) papatasi and P. duboscqi and L. tropica-infected P. arabicus. We found that, in addition to the vector's saliva, the PSG from L. major and L. tropica potently exacerbated cutaneous infection in BALB/c mice, improved the probability of developing a patent cutaneous lesion, parasite growth and the evolution of the lesion. Of note, the presence of PSG in the inoculum more than halved the prepatent period of cutaneous L. tropica infection from an average of 32 weeks to 13 weeks. In addition, L. major and L. tropica PSG extracted from the permissive experimental vector, Lutzomyia (Lu.) longipalpis, also exacerbated infections in mice. These results reinforce and extend the hypothesis that PSG is an important and evolutionarily conserved component of Leishmania infection that can be used to facilitate experimental infection for drug and vaccine screening
- …