1,231 research outputs found
'Difficult' exhibitions and intimate encounters
Over the last thirty years museums around the world have shown an increased willingness to take on what is often characterized as ‘difficult subject matter.’ Absent in Anglophone museum studies literature, however, is a sustained discussion on what it is about such exhibitions that render them ‘difficult’ and, most important, what can be achieved by making painful histories public. This paper sets out to stimulate such discussion, illustrating the relevance of our concerns within the context of a comparative analysis of two recent Swedish exhibitions: The Museum of World Culture’s No Name Fever: AIDS in the Age of Globalization; and Kulturen’s Surviving: Voices from Ravensbrück. Very divergent in their presentation strategies and in the type of information presented, these exhibitions attempt to position their viewers in relation to violence and suffering of ‘others’ distant in time, place, or experience. We conclude by discussing the ways in which public history might animate a critical historical consciousness, a way of living with and within history as a never-ending question that constantly probes the adequacy of the ethical character and social arrangements of daily life
The role of atrial natriuretic peptide to attenuate inflammation in a mouse skin wound and individually perfused rat mesenteric microvessels.
We tested the hypothesis that the anti-inflammatory actions of atrial natriuretic peptide (ANP) result from the modulation of leukocyte adhesion to inflamed endothelium and not solely ANP ligation of endothelial receptors to stabilize endothelial barrier function. We measured vascular permeability to albumin and accumulation of fluorescent neutrophils in a full-thickness skin wound on the flank of LysM-EGFP mice 24 h after formation. Vascular permeability in individually perfused rat mesenteric microvessels was also measured after leukocytes were washed out of the vessel lumen. Thrombin increased albumin permeability and increased the accumulation of neutrophils. The thrombin-induced inflammatory responses were attenuated by pretreating the wound with ANP (30 min). During pretreatment ANP did not lower permeability, but transiently increased baseline albumin permeability concomitant with the reduction in neutrophil accumulation. ANP did not attenuate acute increases in permeability to histamine and bradykinin in individually perfused rat microvessels. The hypothesis that anti-inflammatory actions of ANP depend solely on endothelial responses that stabilize the endothelial barrier is not supported by our results in either individually perfused microvessels in the absence of circulating leukocytes or the more chronic skin wound model. Our results conform to the alternate hypothesis that ANP modulates the interaction of leukocytes with the inflamed microvascular wall of the 24 h wound. Taken together with our previous observations that ANP reduces deformability of neutrophils and their strength of attachment, rolling, and transvascular migration, these observations provide the basis for additional investigations of ANP as an anti-inflammatory agent to modulate leukocyte-endothelial cell interactions
Simplicity of eigenvalues in Anderson-type models
We show almost sure simplicity of eigenvalues for several models of
Anderson-type random Schr\"odinger operators, extending methods introduced by
Simon for the discrete Anderson model. These methods work throughout the
spectrum and are not restricted to the localization regime. We establish
general criteria for the simplicity of eigenvalues which can be interpreted as
separately excluding the absence of local and global symmetries, respectively.
The criteria are applied to Anderson models with matrix-valued potential as
well as with single-site potentials supported on a finite box.Comment: 20 page
Towards quantum superpositions of a mirror
We propose a scheme for creating quantum superposition states involving of
order atoms via the interaction of a single photon with a tiny
mirror. This mirror, mounted on a high-quality mechanical oscillator, is part
of a high-finesse optical cavity which forms one arm of a Michelson
interferometer. By observing the interference of the photon only, one can study
the creation and decoherence of superpositions involving the mirror. All
experimental requirements appear to be within reach of current technology.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Let
The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors.
Deregulation of the phosphoinositide-3-OH kinase (PI(3)K) pathway has been implicated in numerous pathologies including cancer, diabetes, thrombosis, rheumatoid arthritis and asthma. Recently, small-molecule and ATP-competitive PI(3)K inhibitors with a wide range of selectivities have entered clinical development. In order to understand the mechanisms underlying the isoform selectivity of these inhibitors, we developed a new expression strategy that enabled us to determine to our knowledge the first crystal structure of the catalytic subunit of the class IA PI(3)K p110 delta. Structures of this enzyme in complex with a broad panel of isoform- and pan-selective class I PI(3)K inhibitors reveal that selectivity toward p110 delta can be achieved by exploiting its conformational flexibility and the sequence diversity of active site residues that do not contact ATP. We have used these observations to rationalize and synthesize highly selective inhibitors for p110 delta with greatly improved potencies
MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer
SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and
submillimeter wavelength astronomy. Its very small size, wide spectral
bandwidth, and highly multiplexed readout will enable construction of powerful
multibeam spectrometers for high-redshift observations. The spectrometer
consists of a horn-coupled microstrip feedline, a bank of narrow-band
superconducting resonator filters that provide spectral selectivity, and
Kinetic Inductance Detectors (KIDs) that detect the power admitted by each
filter resonator. The design is realized using thin-film lithographic
structures on a silicon wafer. The mm-wave microstrip feedline and spectral
filters of the first prototype are designed to operate in the band from 195-310
GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed
to operate at hundreds of MHz and are fabricated from titanium nitride with a
Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip,
passes through the frequency-selective filter, and is finally absorbed by the
corresponding KID where it causes a measurable shift in the resonant frequency.
In this proceedings, we present the design of the KIDs employed in SuperSpec
and the results of initial laboratory testing of a prototype device. We will
also briefly describe the ongoing development of a demonstration instrument
that will consist of two 500-channel, R=700 spectrometers, one operating in the
1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update
Publishing and sharing multi-dimensional image data with OMERO
Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org
Ruthenium‐Containing Linear Helicates and Mesocates with Tuneable p53‐Selective Cytotoxicity in Colorectal Cancer Cells
The ligands L1 and L2 both form separable dinuclear double‐stranded helicate and mesocate complexes with RuII. In contrast to clinically approved platinates, the helicate isomer of [Ru2(L1)2]4+ was preferentially cytotoxic to isogenic cells (HCT116 p53−/−), which lack the critical tumour suppressor gene. The mesocate isomer shows the reverse selectivity, with the achiral isomer being preferentially cytotoxic towards HCT116 p53+/+. Other structurally similar RuII‐containing dinuclear complexes showed very little cytotoxic activity. This study demonstrates that alterations in ligand or isomer can have profound effects on cytotoxicity towards cancer cells of different p53 status and suggests that selectivity can be “tuned” to either genotype. In the search for compounds that can target difficult‐to‐treat tumours that lack the p53 tumour suppressor gene, [Ru2(L1)2]4+ is a promising compound for further development
- …