1,321 research outputs found

    Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin-121\over2 XXZXXZ Models

    Full text link
    We apply the microscopic coupled-cluster method (CCM) to the spin-121\over2 XXZXXZ models on both the one-dimensional chain and the two-dimensional square lattice. Based on a systematic approximation scheme of the CCM developed by us previously, we carry out high-order {\it ab initio} calculations using computer-algebraic techniques. The ground-state properties of the models are obtained with high accuracy as functions of the anisotropy parameter. Furthermore, our CCM analysis enables us to study their quantum critical behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon request. UMIST Preprint MA-000-000

    Improving service coordination for children with complex needs

    Get PDF
    Although recognised by policy incentives shaping children's services, research and service development for children with complex healthcare needs have received limited attention. Both health-care professionals and families of those children affected frequently report fragmented care and unmet needs in the literature. Not only is the wellbeing of the family and health of the child jeopardised, but also the lack of consistent service coordination between diagnosis, impairment, functional need or disability, directly contributes to a lack of data for the subgroup of children with complex healthcare needs. In this scoping review, key themes are identified, proposing priorities for innovation of future services. It is clear from the literature, longitudinal data analysis providing a more accessible platform for service evaluation and improvement, specialist training for key workers, and further research around definitions and classification systems, is lacking

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (kmk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit mm \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    2,8-Dimethyl­tricyclo­[5.3.1.13,9]dodecane-syn-2,syn-8-diol–propanoic acid (1/1)

    Get PDF
    The racemic title compound, C14H24O2·C3H6O2, crystallizes in the monoclinic space group P21/c as a 1:1 diol/carboxylic acid cocrystal, A–B. The lattice incorporates infinite chains of the alcohol–carboxylic acid–alcohol supra­molecular synthon, (⋯O—H⋯O=C(R)—O—H⋯O—H⋯), in which the hydrogen-bonded mol­ecules (A—B—A)n surround a pseudo-threefold screw axis. The carboxylic acid group functions like an extended alcohol hydr­oxy group. Each diol, A, takes part in two such threefold screw arrangements, leading to a hydrogen-bonded layer structure, with adjacent layers containing diol mol­ecules of opposite handedness. The central C atom of the propano bridge is disordered over two sites of occupancies 0.75 (1) and 0.25 (1). The methyl group of the propanoic acid molecule is disordered over two sites of occupancies 0.68 (1) and 0.32 (1)

    Musical expertise and the ability to imagine loudness

    Get PDF
    Most perceived parameters of sound (e.g. pitch, duration, timbre) can also be imagined in the absence of sound. These parameters are imagined more veridically by expert musicians than non-experts. Evidence for whether loudness is imagined, however, is conflicting. In music, the question of whether loudness is imagined is particularly relevant due to its role as a principal parameter of performance expression. This study addressed the hypothesis that the veridicality of imagined loudness improves with increasing musical expertise. Experts, novices and non-musicians imagined short passages of well-known classical music under two counterbalanced conditions: 1) while adjusting a slider to indicate imagined loudness of the music and 2) while tapping out the rhythm to indicate imagined timing. Subtests assessed music listening abilities and working memory span to determine whether these factors, also hypothesised to improve with increasing musical expertise, could account for imagery task performance. Similarity between each participant's imagined and listening loudness profiles and reference recording intensity profiles was assessed using time series analysis and dynamic time warping. The results suggest a widespread ability to imagine the loudness of familiar music. The veridicality of imagined loudness tended to be greatest for the expert musicians, supporting the predicted relationship between musical expertise and musical imagery ability

    Microscale genetic differentiation in a sessile invertebrate with cloned larvae: investigating the role of polyembryony

    Get PDF
    Microscale genetic differentiation of sessile organisms can arise from restricted dispersal of sexual propagules, leading to isolation by distance, or from localised cloning. Cyclostome bryozoans offer a possible combination of both: the localised transfer of spermatozoa between mates with limited dispersal of the resulting larvae, in association with the splitting of each sexually produced embryo into many clonal copies (polyembryony). We spatially sampled 157 colonies of Crisia denticulata from subtidal rock overhangs from one shore in Devon, England at a geographic scale of ca. 0.05 to 130m plus a further 21 colonies from Pembrokeshire, Wales as an outgroup. Analysis of molecular variance (AMOVA) revealed that the majority (67%) of genetic variation was distributed among individuals within single rock overhangs, with only 16% of variation among different overhangs within each shore and 17% of variation between the ingroup and outgroup shores. Despite local genetic variation, pairwise genetic similarity analysed by spatial autocorrelation was greatest at the smallest inter-individual distance we tested (5cm) and remained significant and positive across generally within-overhang comparisons (<4m). Spatial autocorrelation and AMOVA analyses both indicated that patches of C. denticulata located on different rock overhangs tended to be genetically distinct, with the switch from positive to negative autocorrelation, which is often considered to be the distance within which individuals reproduce with their close relatives or the radius of a patch, occurring at the 4-8m distance class. Rerunning analyses with twenty data sets that only included one individual of each multilocus genotype (n=97) or the single data set that contained just the unique genotypes (n=67) revealed that the presence of repeat genotypes had an impact on genetic structuring (PhiPT values were reduced when shared genotypes were removed from the dataset) but that it was not great and only statistically evident at distances between individuals of 1-2m. Comparisons to a further 20 randomisations of the data set that were performed irrespective of genotype (n=97) suggested that this conclusion is not an artefact of reduced sample size. A resampling procedure using kinship coefficients, implemented by the software package GENCLONE gave broadly similar results but the greater statistical power allowed small but significant impacts of repeat genotypes on genetic structure to be also detected at 0.125-0.5 and 4-16m. Although we predict that a proportion of the repeat multilocus genotypes are shared by chance, such generally within-overhang distances may represent a common distance of cloned larval dispersal. These results suggests that closely situated potential mates include a significant proportion of the available genetic diversity within a population, making it unlikely that, as previously hypothesised, the potential disadvantage of producing clonal broods through polyembryony is offset by genetic uniformity within the mating neighbourhood. We also report an error in the published primer note of Craig et al. (Mol Ecol Notes 1:281-282, 2001): loci Cd5 and Cd6 appear to be the same microsatellit

    Musical expertise and the ability to imagine loudness

    Get PDF
    Most perceived parameters of sound (e.g. pitch, duration, timbre) can also be imagined in the absence of sound. These parameters are imagined more veridically by expert musicians than non-experts. Evidence for whether loudness is imagined, however, is conflicting. In music, the question of whether loudness is imagined is particularly relevant due to its role as a principal parameter of performance expression. This study addressed the hypothesis that the veridicality of imagined loudness improves with increasing musical expertise. Experts, novices and non-musicians imagined short passages of well-known classical music under two counterbalanced conditions: 1) while adjusting a slider to indicate imagined loudness of the music and 2) while tapping out the rhythm to indicate imagined timing. Subtests assessed music listening abilities and working memory span to determine whether these factors, also hypothesised to improve with increasing musical expertise, could account for imagery task performance. Similarity between each participant's imagined and listening loudness profiles and reference recording intensity profiles was assessed using time series analysis and dynamic time warping. The results suggest a widespread ability to imagine the loudness of familiar music. The veridicality of imagined loudness tended to be greatest for the expert musicians, supporting the predicted relationship between musical expertise and musical imagery ability

    The toxic metal hypothesis for neurological disorders

    Get PDF
    Multiple sclerosis and the major sporadic neurogenerative disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer disease are considered to have both genetic and environmental components. Advances have been made in finding genetic predispositions to these disorders, but it has been difficult to pin down environmental agents that trigger them. Environmental toxic metals have been implicated in neurological disorders, since human exposure to toxic metals is common from anthropogenic and natural sources, and toxic metals have damaging properties that are suspected to underlie many of these disorders. Questions remain, however, as to how toxic metals enter the nervous system, if one or combinations of metals are sufficient to precipitate disease, and how toxic metal exposure results in different patterns of neuronal and white matter loss. The hypothesis presented here is that damage to selective locus ceruleus neurons from toxic metals causes dysfunction of the blood–brain barrier. This allows circulating toxicants to enter astrocytes, from where they are transferred to, and damage, oligodendrocytes, and neurons. The type of neurological disorder that arises depends on (i) which locus ceruleus neurons are damaged, (ii) genetic variants that give rise to susceptibility to toxic metal uptake, cytotoxicity, or clearance, (iii) the age, frequency, and duration of toxicant exposure, and (iv) the uptake of various mixtures of toxic metals. Evidence supporting this hypothesis is presented, concentrating on studies that have examined the distribution of toxic metals in the human nervous system. Clinicopathological features shared between neurological disorders are listed that can be linked to toxic metals. Details are provided on how the hypothesis applies to multiple sclerosis and the major neurodegenerative disorders. Further avenues to explore the toxic metal hypothesis for neurological disorders are suggested. In conclusion, environmental toxic metals may play a part in several common neurological disorders. While further evidence to support this hypothesis is needed, to protect the nervous system it would be prudent to take steps to reduce environmental toxic metal pollution from industrial, mining, and manufacturing sources, and from the burning of fossil fuels
    corecore