169 research outputs found

    Changes in ventilation of the Mediterranean Sea during the past 25 year

    Get PDF
    Significant changes in the overturning circulation of the Mediterranean Sea has been observed during the last few decades, the most prominent phenomena being the Eastern Mediterranean Transient (EMT) in the early 1990s and the Western Mediterranean Transition (WMT) during the mid-2000s. During both of these events unusually large amounts of deep water were formed, and in the case of the EMT, the deep water formation area shifted from the Adriatic to the Aegean Sea. Here we synthesize a unique collection of transient tracer (CFC-12, SF6 and tritium) data from nine cruises conducted between 1987 and 2011 and use these data to determine temporal variability of Mediterranean ventilation. We also discuss biases and technical problems with transient tracer-based ages arising from their different input histories over time; particularly in the case of time-dependent ventilation. We observe a period of low ventilation in the deep eastern (Levantine) basin after it was ventilated by the EMT so that the age of the deep water is increasing with time. In the Ionian Sea, on the other hand, we see evidence of increased ventilation after year 2001, indicating the restarted deep water formation in the Adriatic Sea. This is also reflected in the increasing age of the Cretan Sea deep water and decreasing age of Adriatic Sea deep water since the end of the 1980s. In the western Mediterranean deep basin we see the massive input of recently ventilated waters during the WMT. This signal is not yet apparent in the Tyrrhenian Sea, where the ventilation seems to be fairly constant since the EMT. Also the western Alboran Sea does not show any temporal trends in ventilation

    Mending a broken heart by biomimetic 3D printed natural biomaterial-based cardiac patches: a review

    Get PDF
    : Myocardial infarction is one of the major causes of mortality as well as morbidity around the world. Currently available treatment options face a number of drawbacks, hence cardiac tissue engineering, which aims to bioengineer functional cardiac tissue, for application in tissue repair, patient specific drug screening and disease modeling, is being explored as a viable alternative. To achieve this, an appropriate combination of cells, biomimetic scaffolds mimicking the structure and function of the native tissue, and signals, is necessary. Among scaffold fabrication techniques, three-dimensional printing, which is an additive manufacturing technique that enables to translate computer-aided designs into 3D objects, has emerged as a promising technique to develop cardiac patches with a highly defined architecture. As a further step toward the replication of complex tissues, such as cardiac tissue, more recently 3D bioprinting has emerged as a cutting-edge technology to print not only biomaterials, but also multiple cell types simultaneously. In terms of bioinks, biomaterials isolated from natural sources are advantageous, as they can provide exceptional biocompatibility and bioactivity, thus promoting desired cell responses. An ideal biomimetic cardiac patch should incorporate additional functional properties, which can be achieved by means of appropriate functionalization strategies. These are essential to replicate the native tissue, such as the release of biochemical signals, immunomodulatory properties, conductivity, enhanced vascularization and shape memory effects. The aim of the review is to present an overview of the current state of the art regarding the development of biomimetic 3D printed natural biomaterial-based cardiac patches, describing the 3D printing fabrication methods, the natural-biomaterial based bioinks, the functionalization strategies, as well as the in vitro and in vivo applications

    An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning

    Get PDF
    Electrospun organic/inorganic hybrid scaffolds have been appealing in tissue regeneration owing to the integrated physicochemical and biological performances. However, the conventional electrospun scaffolds with non-woven structures usually failed to enable deep cell infiltration due to the densely stacked layers among the fibers. Herein, through self-assembly-driven electrospinning, a polyhydroxybutyrate/poly(e-caprolactone)/58S sol-gel bioactive glass (PHB/PCL/58S) hybrid scaffold with honeycomb-like structures was prepared by manipulating the solution composition and concentration during a one-step electrospinning process. The mechanisms enabling the formation of self-assembled honeycomb-like structures were investigated through comparative studies using Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) between PHB/PCL/58S and PHB/PCL/sol-gel silica systems. The obtained honeycomb-like structure was built up from nanofibers with an average diameter of 370 nm and showed a bimodal distribution of pores: large polygonal pores up to hundreds of micrometers within the honeycomb-cells and irregular pores among the nanofibers ranging around few micrometers. The cell-materials interactions were further studied by culturing MG-63 osteoblast-like cells for 7 days. Cell viability, cell morphology and cell infiltration were comparatively investigated as well. While cells merely proliferated on the surface of non-woven structures, MG-63 cells showed extensive proliferation and deep infiltration up to 100-200 mu m into the honeycomb-like structure. Moreover, the cellular spatial organization was readily regulated by the honeycomb-like pattern as well. Overall, the newly obtained hybrid scaffold may integrate the enhanced osteogenicity originating from the bioactive components, and the improved cell-material interactions brought by the honeycomb-like structure, making the new scaffold a promising candidate for tissue regeneration.Peer reviewe

    Construction and test of a new CBM-TRD prototype in Frankfurt

    Get PDF

    Modelling of the anthropogenic tritium transient and its decay product helium-3 in the Mediterranean Sea using a high-resolution regional model

    Get PDF
    International audienceThis numerical study provides the first simulation of the anthropogenic tritium invasion and its decay product helium-3 (3 He) in the Mediterranean Sea. The simulation covers the entire tritium (3 H) transient generated by the atmospheric nuclear weapons tests performed in the 1950s and early 1960s and is run till 2011. Tritium, helium-3 and their derived age estimates are particularly suitable for studying intermediate and deep-water ventilation and spreading of water masses at intermediate/deep levels. The simulation is made using a high-resolution regional model NEMO (Nucleus for European Modelling of the Ocean), in a regional configuration for the Mediterranean Sea called MED12, forced at the surface with prescribed tritium evolution derived from observations. The simulation is compared to measurements of tritium and helium-3 performed along large-scale transects in the Mediterranean Sea during the last few decades on cruises of R/V Meteor: M5/6, M31/1, M44/4, M51/2, M84/3, and R/V Poseidon: 234. The results show that the input function used for the tritium generates a realistic distribution of the main hydrographic features of the Mediterranean Sea circulation. In the eastern basin, the results highlight the weak formation of Adriatic Deep Water in the model, which explains its weak contribution to the Eastern Mediterranean Deep Water (EMDW) in the Ionian sub-basin. It produces a realistic representation of the Eastern Mediterranean Transient (EMT) signal, simulating a deep-water formation in the Aegean sub-basin at the beginning of 1993, with a realistic timing of deep-water renewal in the eastern basin

    Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel

    Get PDF
    Novel chitosan composite coatings containing titania nanoparticles (n-TiO2) for biomedical applications were developed by electrophoretic deposition (EPD) from ethanol–water suspensions. The optimal ethanol–water ratio was studied in order to avoid bubble formation during the EPD process and to ensure homogeneous coatings. Different n-TiO2 contents (0.5–10 g L−1) were studied for a fixed chitosan concentration (0.5 g L−1) and the properties of the electrophoretic coatings obtained were characterized. Coating composition was analyzed by thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Scanning electron microscopy (SEM) was employed to study both the surface and the cross section morphology of the coatings, and the thicknesses (2–6 μm) of the obtained coatings were correlated with the initial ceramic content. Contact angle measurements, as a preliminary study to predict hypothetic protein attachment on the coatings, were performed for different samples and the influence of a second chitosan layer on top of the coatings was also tested. Finally, the electrochemical behavior of the coatings, evaluated by polarization curves in DMEM at 37 °C, was studied in order to assess the corrosion resistance provided by the n-TiO2/chitosan coatings

    Biosilicate (R)-gelatine bone scaffolds by the foam replica technique: development and characterization

    Get PDF
    The development of bioactive glass-ceramic materials has been a topic of great interest aiming at enhancing the mechanical strength of traditional bioactive scaffolds. In the present study, we test and demonstrate the use of Biosilicate® glass-ceramic powder to fabricate bone scaffolds by the foam replica method. Scaffolds possessing the main requirements for use in bone tissue engineering (95% porosity, 200–500 μm pore size) were successfully produced. Gelatine coating was investigated as a simple approach to increase the mechanical competence of the scaffolds. The gelatine coating did not affect the interconnectivity of the pores and did not significantly affect the bioactivity of the Biosilicate® scaffold. The gelatine coating significantly improved the compressive strength (i.e. 0.80 ± 0.05 MPa of coated versus 0.06 ± 0.01 MPa of uncoated scaffolds) of the Biosilicate® scaffold. The combination of Biosilicate® glass-ceramic and gelatine is attractive for producing novel scaffolds for bone tissue engineering
    • …
    corecore