37 research outputs found

    The ubiquitin-conjugating DNA repair enzyme is a maternal factor essential for early embryonic development in mice

    Get PDF
    The Saccharomyces cerevisiae RAD6 protein is required for a surprising diversity of cellular processes, including sporulation and replicational damage bypass of DNA lesions. In mammals, two RAD6-related genes, HR6A and HR6B, encode highly homologous proteins. Here, we describe the phenotype of cells and mice deficient for the mHR6A gene. Just like mHR6B knockout mouse embryonic fibroblasts, mHR6A-deficient cells appear to have normal DNA damage resistance properties, but mHR6A knockout male and female mice display a small decrease in body weight. The necessity for at least one functional mHR6A (X-chromosomal) or mHR6B (autosomal) allele in all somatic cell types is supported by the fact that neither animals lacking both proteins nor females with only one intact mHR6A allele are viable. In striking contrast to mHR6B knockout males, which show a severe spermatogenic defect, mHR6A knockout males are normally fertile. However, mHR6A knockout females fail to produce offspring despite a normal ovarian histology and ovulation. The absence of mHR6A in oocytes prevents development beyond the embryonic two-cell stage but does not result in an aberrant methylation pattern of histone H

    Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase.

    Get PDF
    The ubiquitin-conjugating enzymes HR6A and HR6B are the two mammalian homologs of Saccharomyces cerevisiae RAD6. In yeast, RAD6 plays an important role in postreplication DNA repair and in sporulation. HR6B knockout mice are viable, but spermatogenesis is markedly affected during postmeiotic steps, leading to male infertility. In the present study, increased apoptosis of HR6B knockout primary spermatocytes was detected during the first wave of spermatogenesis, indicating that HR6B performs a primary role during the meiotic prophase. Detailed analysis of HR6B knockout pachytene nuclei showed major changes in the synaptonemal complexes. These complexes were found to be longer. In addition, we often found depletion of synaptonemal complex proteins from near telomeric regions in the HR6B knockout pachytene nuclei. Finally, we detected an increased number of foci containing the mismatc

    Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs) targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts.</p> <p>Methods</p> <p>Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed.</p> <p>Results</p> <p>For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62), by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons.</p> <p>Conclusion</p> <p>The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.</p

    Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease

    Get PDF
    The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis

    Increased platelet reactivity is associated with circulating platelet-monocyte complexes and macrophages in human atherosclerotic plaques

    Get PDF
    Objective: Platelet reactivity, platelet binding to monocytes and monocyte infiltration play a detrimental role in atherosclerotic plaque progression. We investigated whether platelet reactivity was associated with levels of circulating platelet-monocyte complexes (PMCs) and macrophages in human atherosclerotic carotid plaques. Methods: Platelet reactivity was determined by measuring platelet P-selectin expression after platelet stimulation with increasing concentrations of adenosine diphosphate (ADP), in two independent cohorts: the Circulating Cells cohort (n = 244) and the Athero-Express cohort (n = 91). Levels of PMCs were assessed by flow cytometry in blood samples of patients who were scheduled for percutaneous coronary intervention (Circulating Cells cohort). Monocyte infiltration was semi-quantitatively determined by histological examination of atherosclerotic carotid plaques collected during carotid endarterectomy (Athero-Express cohort). Results: We found increased platelet reactivity in patients with high PMCs as compared to patients with low PMCs (median (interquartile range): 4153 (1585-11267) area under the curve (AUC) vs. 9633 (3580-21565) AUC, P<0.001). Also, we observed increased pl

    Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease

    Get PDF
    The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed n

    Themanummer: Heil in de eenentwintigste eeuw

    No full text
    Dit themanummer is het eerste in een serie van drie themanummers van verschillende theologische tijdschriften over ‘heil in de 21ste eeuw’. Hoe kan het Evangelie van Jezus Christus goed nieuws worden en heilzaam zijn voor mensen van nu? Op allerlei fronten wordt gezocht naar communicatieve vertolkingen. Dat is een weg van vallen en opstaan, want veel vanzelfsprekende patronen en wegen werken niet meer. Bijdragen in dit themanummer van Inspirare (2020, jrg. 3, nr. 2) komen van de hand van Stefan Paas, Gert-Jan Roest, Anneke Kloosterman-van der Sluys, Harm Jan Terwel en Sake Stoppels. Een volgend themanummer in de serie van drie is Kerk en Theologie jrg 72, 2021, nr. 3. Een derde themanummer zal in 2022 of 2023 verschijnen in het tijdschrift Theologia Reformata
    corecore