23 research outputs found

    Influence of Network Topology on the Viscoelastic Properties of Dynamically Crosslinked Hydrogels

    Get PDF
    Biological materials combine stress relaxation and self-healing with non-linear stress-strain responses. These characteristic features are a direct result of hierarchical self-assembly, which often results in fiber-like architectures. Even though structural knowledge is rapidly increasing, it has remained a challenge to establish relationships between microscopic and macroscopic structure and function. Here, we focus on understanding how network topology determines the viscoelastic properties, i.e., stress relaxation, of biomimetic hydrogels. We have dynamically crosslinked two different synthetic polymers with one and the same crosslink. The first polymer, a polyisocyanopeptide (PIC), self-assembles into semi-flexible, fiber-like bundles, and thus displays stress-stiffening, similar to many biopolymer networks. The second polymer, 4-arm poly(ethylene glycol) (starPEG), serves as a reference network with well-characterized structural and viscoelastic properties. Using one and the same coiled coil crosslink allows us to decouple the effects of crosslink kinetics and network topology on the stress relaxation behavior of the resulting hydrogel networks. We show that the fiber-containing PIC network displays a relaxation time approximately two orders of magnitude slower than the starPEG network. This reveals that crosslink kinetics is not the only determinant for stress relaxation. Instead, we propose that the different network topologies determine the ability of elastically active network chains to relax stress. In the starPEG network, each elastically active chain contains exactly one crosslink. In the absence of entanglements, crosslink dissociation thus relaxes the entire chain. In contrast, each polymer is crosslinked to the fiber bundle in multiple positions in the PIC hydrogel. The dissociation of a single crosslink is thus not sufficient for chain relaxation. This suggests that tuning the number of crosslinks per elastically active chain in combination with crosslink kinetics is a powerful design principle for tuning stress relaxation in polymeric materials. The presence of a higher number of crosslinks per elastically active chain thus yields materials with a slow macroscopic relaxation time but fast dynamics at the microscopic level. Using this principle for the design of synthetic cell culture matrices will yield materials with excellent long-term stability combined with the ability to locally reorganize, thus facilitating cell motility, spreading, and growth

    Biomaterial-Based Activation and Expansion of Tumor-Specific T Cells

    Get PDF
    Traditional tumor vaccination approaches mostly focus on activating dendritic cells (DCs) by providing them with a source of tumor antigens and/or adjuvants, which in turn activate tumor-reactive T cells. Novel biomaterial-based cancer immunotherapeutic strategies focus on directly activating and stimulating T cells through molecular cues presented on synthetic constructs with the aim of improving T cell survival, more precisely steer T cell activation and direct T cell differentiation. Synthetic artificial antigen presenting cells (aAPCs) decorated with T cell-activating ligands are being developed to induce robust tumor-specific T cell responses, essentially bypassing DCs. In this perspective, we approach these promising new technologies from an immunological angle, first by identifying the CD4+ and CD8+ T cell subtypes that are imperative for robust anti-cancer immunity and subsequently discussing the molecular cues needed to induce these cells types. We will elaborate on how biomaterials can be applied to stimulate T cells in vitro and in vivo to improve their survival, activation and function. Scaffold-based methods can also be used as delivery vehicles for adoptive transfer of T cells, including tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor expressing (CAR) T cells, while simultaneously stimulating these cells. Finally, we provide suggestions on how these insights could advance the field of biomaterial-based activation and expansion of tumor-specific T cells in the future

    Probing Polar-π Interactions Between Tetrazoles and Aromatic Rings

    No full text
    The heterocyclic tetrazole, a well-established bioisosteric replacement of carboxylic acid, plays an important role in medicinal chemistry. To deepen the functional understanding of tetrazoles in chemical sciences, it is essential to investigate the noncovalent interactions between the tetrazole ring and aromatic rings. Here, we report synthetic, spectroscopic, structural and quantum chemical analyses on specially designed 2-arylphenyl-1H-tetrazoles to study the underlying noncovalent interactions between the tetrazole ring and the neighboring aromatic ring possessing substituents at para/meta position. pKa values and proton affinities of 2-arylphenyl-1H-tetrazoles correlate well with Hammett sigma values of para-substituents at the flanking aromatic ring. Molecular orbital and energy decomposition analyses reveal that through-space NH–π interactions and π–π interactions contribute to the trend of pKa values and proton affinities of 2-arylphenyl-1H-tetrazoles. The electrostatic interaction between tetrazole/tetrazolide interacting with the aromatic rings appears responsible for the observed acidity trends. These results will be helpful for the rational design of tetrazole-based drugs and materials

    Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels

    No full text
    Bulk matrix stiffness has emerged as a key mechanical cue in stem cell differentiation. Here, we show that the commitment and differentiation of human mesenchymal stem cells encapsulated in physiologically soft (∼0.2–0.4 kPa), fully synthetic polyisocyanopeptide-based three-dimensional (3D) matrices that mimic the stiffness of adult stem cell niches and show biopolymer-like stress stiffening, can be readily switched from adipogenesis to osteogenesis by changing only the onset of stress stiffening. This mechanical behaviour can be tuned by simply altering the material’s polymer length whilst maintaining stiffness and ligand density. Our findings introduce stress stiffening as an important parameter that governs stem cell fate in a 3D microenvironment, and reveal a correlation between the onset of stiffening and the expression of the microtubule-associated protein DCAMKL1, thus implicating DCAMKL1 in a stress-stiffening-mediated, mechanotransduction pathway that involves microtubule dynamics in stem cell osteogenesis

    Probing Through-Space Polar-π Interactions in 2,6-Diarylphenols

    No full text
    Although it is well established that the acidity of phenol can be fine-tuned with substituents on its aromatic ring via through-bond effects, the role of through-space effects on the acidity of phenols is presently poorly understood. Here, we present integrated experimental and computational studies on substituted 2,6-diarylphenols that demonstrate the essential contribution from through-space OH-π interactions and O - -π interactions in the observed trends in proton affinities and acidities of 2,6-diarylphenols

    Probing the Lewis Acidity of Boronic Acids through Interactions with Arene Substituents

    No full text
    Boronic acids are Lewis acids that exist in equilibrium with boronate forms in aqueous solution. Here we experimentally and computationally investigated the Lewis acidity of 2,6-diarylphenylboronic acids; specially designed phenylboronic acids that possess two flanking aromatic rings with tunable aromatic character. Hammett analysis of 2,6-diarylphenylboronic acids reveals that their Lewis acidity remains unchanged upon the introduction of EWG/EDG at the distant para position of the flanking aromatic rings. Structural and computational studies demonstrate that polar-π interactions and solvation effects contribute to the stabilization of boronic acids and boronate forms by aromatic rings. Our physical-organic chemistry work highlights that boronic acids and boronates can be stabilized by aromatic systems, leading to an important molecular knowledge for rational design and development of boronic acid-based catalysts and inhibitors of biomedically important proteins

    Do Sulfonamides Interact with Aromatic Rings?

    No full text
    Aromatic rings form energetically favorable interactions with many polar groups in chemical and biological systems. Recent molecular studies have shown that sulfonamides can chelate metal ions and form hydrogen bonds, however, it is presently not established whether the polar sulfonamide functionality also interacts with aromatic rings. Here, synthetic, spectroscopic, structural, and quantum chemical analyses on 2,6-diarylbenzenesulfonamides are reported, in which two flanking aromatic rings are positioned close to the central sulfonamide moiety. Fine-tuning the aromatic character by substituents on the flanking rings leads to linear trends in acidity and proton affinity of sulfonamides. This physical-organic chemistry study demonstrates that aromatic rings have a capacity to stabilize sulfonamides via through-space NH–π interactions. These results have implications in rational drug design targeting electron-rich aromatic rings in proteins

    Through-Space Stabilization of an Imidazolium Cation by Aromatic Rings

    No full text
    Imidazole-based compounds are widely found in natural products, synthetic molecules, and biomolecules. Noncovalent interactions between the imidazole ring and other functional groups play an important role in determining the function of diverse molecules. However, there is a limited understanding of the underlying noncovalent interactions between imidazoles and aromatic systems. In this work, we report physical-organic chemistry studies on 2-(2,6-diarylphenyl)-1H-imidazoles and their protonated forms to investigate the noncovalent interactions between the central imidazole ring and two flanking aromatic rings possessing substituents at the para/meta position. Hammett analysis revealed that pKavalues and proton affinities correlate well with Hammett σ values of para-substituents at the flanking rings. Additional quantitative Kohn-Sham molecular orbital and energy decomposition analyses reveal that through-space π-πinteractions and NH-πinteractions contribute to the intramolecular stabilization of the imidazolium cation. The results are important because they clearly demonstrate that the imidazolium cation forms energetically favorable noncovalent interactions with aromatic rings via the through-space effect, a knowledge that can be used in rational drug and catalyst design
    corecore