105 research outputs found
Response Functions to Critical Shocks in Social Sciences: An Empirical and Numerical Study
We show that, provided one focuses on properly selected episodes, one can
apply to the social sciences the same observational strategy that has proved
successful in natural sciences such as astrophysics or geodynamics. For
instance, in order to probe the cohesion of a policy, one can, in different
countries, study the reactions to some huge and sudden exogenous shocks, which
we call Dirac shocks. This approach naturally leads to the notion of structural
(as opposed or complementary to temporal) forecast. Although structural
predictions are by far the most common way to test theories in the natural
sciences, they have been much less used in the social sciences. The Dirac shock
approach opens the way to testing structural predictions in the social
sciences. The examples reported here suggest that critical events are able to
reveal pre-existing ``cracks'' because they probe the social cohesion which is
an indicator and predictor of future evolution of the system, and in some cases
foreshadows a bifurcation. We complement our empirical work with numerical
simulations of the response function (``damage spreading'') to Dirac shocks in
the Sznajd model of consensus build-up. We quantify the slow relaxation of the
difference between perturbed and unperturbed systems, the conditions under
which the consensus is modified by the shock and the large variability from one
realization to another
Statistical properties of absolute log-returns and a stochastic model of stock markets with heterogeneous agents
This paper is intended as an investigation of the statistical properties of
{\it absolute log-returns}, defined as the absolute value of the logarithmic
price change, for the Nikkei 225 index in the 28-year period from January 4,
1975 to December 30, 2002. We divided the time series of the Nikkei 225 index
into two periods, an inflationary period and a deflationary period. We have
previously [18] found that the distribution of absolute log-returns can be
approximated by the power-law distribution in the inflationary period, while
the distribution of absolute log-returns is well described by the exponential
distribution in the deflationary period.\par To further explore these empirical
findings, we have introduced a model of stock markets which was proposed in
[19,20]. In this model, the stock market is composed of two groups of traders:
{\it the fundamentalists}, who believe that the asset price will return to the
fundamental price, and {\it the interacting traders}, who can be noise traders.
We show through numerical simulation of the model that when the number of
interacting traders is greater than the number of fundamentalists, the
power-law distribution of absolute log-returns is generated by the interacting
traders' herd behavior, and, inversely, when the number of fundamentalists is
greater than the number of interacting traders, the exponential distribution of
absolute log-returns is generated.Comment: 12 pages, 5 figure
Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0
People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.0 of SBOL Visual, which builds on the prior SBOL Visual 1.0 standard by expanding diagram syntax to include functional interactions and molecular species, making the relationship between diagrams and the SBOL data model explicit, supporting families of symbol variants, clarifying a number of requirements and best practices, and significantly expanding the collection of diagram glyphs
Synthetic biology open language visual (SBOL Visual) version 2.3
People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences
Synthetic Biology Open Language (SBOL) Version 1.1.0
In this BioBricks Foundation Request for Comments (BBF RFC), we specify the Synthetic Biology
Open Language (SBOL) Version 1.1.0 to enable the electronic exchange of information
describing DNA components used in synthetic biology. We define:
1. the vocabulary, a set of preferred terms and
2. the core data model, a common computational representation
Urban road networks -- Spatial networks with universal geometric features? A case study on Germany's largest cities
Urban road networks have distinct geometric properties that are partially
determined by their (quasi-) two-dimensional structure. In this work, we study
these properties for 20 of the largest German cities. We find that the
small-scale geometry of all examined road networks is extremely similar. The
object-size distributions of road segments and the resulting cellular
structures are characterised by heavy tails. As a specific feature, a large
degree of rectangularity is observed in all networks, with link angle
distributions approximately described by stretched exponential functions. We
present a rigorous statistical analysis of the main geometric characteristics
and discuss their mutual interrelationships. Our results demonstrate the
fundamental importance of cost-efficiency constraints for in time evolution of
urban road networks.Comment: 16 pages; 8 figure
Principles of genetic circuit design
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552
- …