4 research outputs found

    Subtle Sensing:Detecting Differences in the Flexibility of Virtually Simulated Molecular Objects

    Get PDF
    During VR demos we have performed over last few years, many participants (in the absence of any haptic feedback) have commented on their perceived ability to 'feel' differences between simulated molecular objects. The mechanisms for such 'feeling' are not entirely clear: observing from outside VR, one can see that there is nothing physical for participants to 'feel'. Here we outline exploratory user studies designed to evaluate the extent to which participants can distinguish quantitative differences in the flexibility of VR-simulated molecular objects. The results suggest that an individual's capacity to detect differences in molecular flexibility is enhanced when they can interact with and manipulate the molecules, as opposed to merely observing the same interaction. Building on these results, we intend to carry out further studies investigating humans' ability to sense quantitative properties of VR simulations without haptic technology

    Group VR experiences can produce ego attenuation and connectedness comparable to psychedelics.

    Get PDF
    With a growing body of research highlighting the therapeutic potential of experiential phenomenology which diminishes egoic identity and increases one's sense of connectedness, there is significant interest in how to elicit such 'self-transcendent experiences' (STEs) in laboratory contexts. Psychedelic drugs (YDs) have proven particularly effective in this respect, producing subjective phenomenology which reliably elicits intense STEs. With virtual reality (VR) emerging as a powerful tool for constructing new perceptual environments, we describe a VR framework called 'Isness-distributed' (Isness-D) which harnesses the unique affordances of distributed multi-person VR to blur conventional self-other boundaries. Within Isness-D, groups of participants co-habit a shared virtual space, collectively experiencing their bodies as luminous energetic essences with diffuse spatial boundaries. It enables moments of 'energetic coalescence', a new class of embodied intersubjective experience where bodies can fluidly merge, enabling participants to include multiple others within their self-representation. To evaluate Isness-D, we adopted a citizen science approach, coordinating an international network of Isness-D 'nodes'. We analyzed the results (N = 58) using 4 different self-report scales previously applied to analyze subjective YD phenomenology (the inclusion of community in self scale, ego-dissolution inventory, communitas scale, and the MEQ30 mystical experience questionnaire). Despite the complexities associated with a distributed experiment like this, the Isness-D scores on all 4 scales were statistically indistinguishable from recently published YD studies, demonstrating that distributed VR can be used to design intersubjective STEs where people dissolve their sense of self in the connection to others
    corecore