646 research outputs found
Process redesign of a surgical pathway improves access to cataract surgery for Aboriginal and Torres Strait Islander people in South East Queensland
The Institute for Urban Indigenous Health (IUIH) aimed to improve access to cataract surgery in urban South East Queensland (SEQ) for Indigenous Australians, without compromising clinical visual outcomes. The Penchansky and Levesque concept of access as the ‘fit’ between the patient’s needs and the ability of the system to meet those needs was used to inform the redesign of the mainstream cataract surgical pathway. The IUIH staff and community stakeholders mapped the traditional external cataract surgical pathway and then innovatively redesigned it to reduce the number of patients being removed by the system at key transition points. The integration of eye health within the primary health care (PHC) clinic has improved the continuity and coordination of care along the surgical pathway, and ensured the sustainability of collaborative partnerships with key external organisations. Audit data demonstrated a significant increase in utilisation of cataract surgical services after the process redesign. Previous studies have found that PHC models involving integration, coordination and continuity of care enhance patient health outcomes; however, the IUIH surgical model extends this to tertiary care. There is scope to apply this model to other surgical pathways and communities who experience access inequity
Radiation Tolerance of Fully-Depleted P-Channel CCDs Designed for the SNAP Satellite
Thick, fully depleted p-channel charge-coupled devices (CCDs) have been
developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have
several advantages over conventional thin, n-channel CCDs, including enhanced
quantum efficiency and reduced fringing at near-infrared wavelengths and
improved radiation tolerance. Here we report results from the irradiation of
CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron and with 0.1-1
MeV electrons at the LBNL Co60 source. These studies indicate that the LBNL
CCDs perform well after irradiation, even in the parameters in which
significant degradation is observed in other CCDs: charge transfer efficiency,
dark current, and isolated hot pixels. Modeling the radiation exposure over a
six-year mission lifetime with no annealing, we expect an increase in dark
current of 20 e/pixel/hr, and a degradation of charge transfer efficiency in
the parallel direction of 3e-6 and 1e-6 in the serial direction. The dark
current is observed to improve with an annealing cycle, while the parallel CTE
is relatively unaffected and the serial CTE is somewhat degraded. As expected,
the radiation tolerance of the p-channel LBNL CCDs is significantly improved
over the conventional n-channel CCDs that are currently employed in space-based
telescopes such as the Hubble Space Telescope.Comment: 11 pages, 10 figures, submitted to IEEE Transaction
The DESI Experiment, a whitepaper for Snowmass 2013
The Dark Energy Spectroscopic Instrument (DESI) is a massively multiplexed
fiber-fed spectrograph that will make the next major advance in dark energy in
the timeframe 2018-2022. On the Mayall telescope, DESI will obtain spectra and
redshifts for at least 18 million emission-line galaxies, 4 million luminous
red galaxies and 3 million quasi-stellar objects, in order to: probe the
effects of dark energy on the expansion history using baryon acoustic
oscillations (BAO), measure the gravitational growth history through
redshift-space distortions, measure the sum of neutrino masses, and investigate
the signatures of primordial inflation. The resulting 3-D galaxy maps at z<2
and Lyman-alpha forest at z>2 will make 1%-level measurements of the distance
scale in 35 redshift bins, thus providing unprecedented constraints on
cosmological models.Comment: 14 pages, 4 figures, a White Paper for Snowmass 201
The effects of charge transfer inefficiency (CTI) on galaxy shape measurements
(Abridged) We examine the effects of charge transfer inefficiency (CTI)
during CCD readout on galaxy shape measurements required by studies of weak
gravitational lensing. We simulate a CCD readout with CTI such as that caused
by charged particle radiation damage. We verify our simulations on data from
laboratory-irradiated CCDs. Only charge traps with time constants of the same
order as the time between row transfers during readout affect galaxy shape
measurements. We characterize the effects of CTI on various galaxy populations.
We baseline our study around p-channel CCDs that have been shown to have charge
transfer efficiency up to an order of magnitude better than several models of
n-channel CCDs designed for space applications. We predict that for galaxies
furthest from the readout registers, bias in the measurement of galaxy shapes,
Delta(e), will increase at a rate of 2.65 +/- 0.02 x 10^(-4) per year at L2 for
accumulated radiation exposure averaged over the solar cycle. If uncorrected,
this will consume the entire shape measurement error budget of a dark energy
mission within about 4 years. Software mitigation techniques demonstrated
elsewhere can reduce this by a factor of ~10, bringing the effect well below
mission requirements. CCDs with higher CTI than the ones we studeied may not
meet the requirements of future dark energy missions. We discuss ways in which
hardware could be designed to further minimize the impact of CTI.Comment: 11 pages, 6 figures, and 2 tables. Accepted for publication in PAS
Constraint on neutrino masses from SDSS-III/BOSS Ly-alpha forest and other cosmological probes
International audienceWe present constraints on the parameters of the CDM cosmologicalmodel in the presence of massive neutrinos, using the one-dimensionalLy forest power spectrum obtained with the Baryon OscillationSpectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS) byPalanque-Delabrouille et al. (2013), complemented by additional cosmologicalprobes. The interpretation of the measured Ly spectrum is done using asecond-order Taylor expansion of the simulated power spectrum. BOSS Ly data alone provide better bounds than previous Ly results,but are still poorly constraining, especially for the sum of neutrino masses, for which we obtain an upper bound of 1.1~eV (95\% CL), includingsystematics for both data and simulations. Ly constraints onCDM parameters and neutrino masses are compatible with CMB bounds fromthe Planck collaboration. Interestingly, the combination of Ly with CMBdata reduces the uncertainties significantly, due to very different directionsof degeneracy in parameter space, leading to the strongest cosmological boundto date on the total neutrino mass, ~eV at 95\% CL (with abest-fit in zero). Adding recent BAO results further tightens this constraintto ~eV at 95\% CL. This bound is nearly independent of thestatistical approach used, and of the different combinations of CMB and BAOdata sets considered in this paper in addition to Ly. Given themeasured values of the two squared mass differences , this resulttends to favor the normal hierarchy scenario against the inverted hierarchyscenario for the masses of the active neutrino species
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
We present the design and performance of the multi-object fiber spectrographs
for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon
Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999
on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the
spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II
surveys, enabling a wide variety of Galactic and extra-galactic science
including the first observation of baryon acoustic oscillations in 2005. The
spectrographs were upgraded in 2009 and are currently in use for BOSS, the
flagship survey of the third-generation SDSS-III project. BOSS will measure
redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha
absorption of 160,000 high redshift quasars over 10,000 square degrees of sky,
making percent level measurements of the absolute cosmic distance scale of the
Universe and placing tight constraints on the equation of state of dark energy.
The twin multi-object fiber spectrographs utilize a simple optical layout
with reflective collimators, gratings, all-refractive cameras, and
state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in
two channels over a bandpass covering the near ultraviolet to the near
infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven
heritage, the spectrographs were upgraded for BOSS with volume-phase
holographic gratings and modern CCD detectors, improving the peak throughput by
nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000
nm, and increasing the number of fibers from 640 to 1000 per exposure. In this
paper we describe the original SDSS spectrograph design and the upgrades
implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and
accepted by AJ. Provides background for the instrument responsible for SDSS
and BOSS spectra. 4th in a series of survey technical papers released in
Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral
Classification), and arXiv:1208.0022 (BOSS Overview
Bacterial outer membrane vesicles provide an alternative pathway for trafficking of Escherichia coli O157 type III secreted effectors to epithelial cells
Outer membrane vesicles (OMVs) are proteoliposomes shed by Gram-negative bacteria. Their secretion is enhanced by the transition into the intra-host milieu, and OMVs play critical roles during pathogenesis. Enterohemorrhagic Escherichia coli O157 (EHEC) can cause diarrheal disease in humans, and soluble toxins including Shiga-like toxins that contribute to disease severity and clinical complications like hemolytic uremic syndrome have been shown to be OMV associated. In addition to Shiga-like toxins, EHEC produces a type III secretion system (T3SS), and T3SS effectors are associated with colonization and disease severity in vivo. Here, we show that type III secreted substrates including translocators and effectors are incorporated into OMVs both in the presence and absence of a functional T3SS. EHEC strains with non-functional T3SS shed more OMVs, and vesicles enter host cells with accelerated kinetics compared to vesicles shed from wild-type EHEC. The T3SS effector translocated intimin receptor (Tir) is trafficked from OMVs into host cells and localizes to the membrane. However, its clustering on the host membrane and co-localization with bacterial pedestals is intimin dependent. We show that OMV-delivered Tir can cross-complement an effector-deficient EHEC strain and promote pedestal formation. Together, these data demonstrate that OMVs provide an alternative pathway for the delivery of EHEC T3SS cargo and that vesicle associated effectors are released from OMVs inside host cells and can retain biological activity. IMPORTANCE
Bacteria can package protein cargo into nanosized membrane blebs that are shed from the bacterial membrane and released into the environment. Here, we report that a type of pathogenic bacteria called enterohemorrhagic Escherichia coli O157 (EHEC) uses their membrane blebs (outer membrane vesicles) to package components of their type 3 secretion system and send them into host cells, where they can manipulate host signaling pathways including those involved in infection response, such as immunity. Usually, EHEC use a needle-like apparatus to inject these components into host cells, but packaging them into membrane blebs that get taken up by host cells is another way of delivery that can bypass the need for a functioning injection system
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the
scale of baryon acoustic oscillations (BAO) in the clustering of matter over a
larger volume than the combined efforts of all previous spectroscopic surveys
of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as
i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7.
Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000
quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5.
Early results from BOSS include the first detection of the large-scale
three-dimensional clustering of the Lyman alpha forest and a strong detection
from the Data Release 9 data set of the BAO in the clustering of massive
galaxies at an effective redshift z = 0.57. We project that BOSS will yield
measurements of the angular diameter distance D_A to an accuracy of 1.0% at
redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the
same redshifts. Forecasts for Lyman alpha forest constraints predict a
measurement of an overall dilation factor that scales the highly degenerate
D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey
is complete. Here, we provide an overview of the selection of spectroscopic
targets, planning of observations, and analysis of data and data quality of
BOSS.Comment: 49 pages, 16 figures, accepted by A
- …
