335 research outputs found
Specificities of a chemically modified laccase from trametes hirsuta on soluble and cellulose-bound substrates
Laccases could prevent fabrics and
garments from re-deposition of dyes during
washing and finishing processes by degrading the solubilized dye. However, laccase action must be restricted to solubilized dye molecules thereby
avoiding decolorization of fabrics. Chemical
modification of enzymes can provide a powerful tool to change the adsorption behaviour of enzymes on water insoluble polymers. Polyethylene glycol (PEG) was covalently attached onto a laccase from Trametes hirsuta. Different molecular
weights of the synthetic polymer were tested
in terms of adsorption behaviour and retained
laccase activity. Covalent attachment of PEG
onto the laccase resulted in enhanced enzyme
stability while with increasing molecular weight of attached PEG the substrate affinity for the laccase conjugate decreased. The activity of the modified laccases on fibre bound dye was drastically reduced decreasing the adsorption of the enzyme on various fabrics. Compared to the 5 kDa PEG laccase conjugate (K/S value 47.60
Responses of marine benthic microalgae to elevated CO<inf>2</inf>
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag
Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere
We report on measurements of the cosmic-ray induced gamma-ray emission of
Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray
Space Telescope. The LAT has observed the Earth during its commissioning phase
and with a dedicated Earth-limb following observation in September 2008. These
measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours
total livetime for the highest quality data selection. This allows the study of
the spatial and spectral distributions of these photons with unprecedented
detail. The spectrum of the emission - often referred to as Earth albedo
gamma-ray emission - has a power-law shape up to 500 GeV with spectral index
Gamma = 2.79+-0.06.Comment: Accepted for publication in PR
Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications
Dark matter (DM) particle annihilation or decay can produce monochromatic
-rays readily distinguishable from astrophysical sources. -ray
line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area
Space Telescope data from 20-300 GeV are presented using a selection based on
requirements for a -ray line analysis, and integrated over most of the
sky. We obtain -ray line flux upper limits in the range , and give corresponding DM annihilation
cross-section and decay lifetime limits. Theoretical implications are briefly
discussed.Comment: 6 pages, 1 figure. Accepted for publication by The Physical Review
Letter
Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009
We present the light curves and spectral data of two exceptionally luminous
gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on
board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During
these flares, having a duration of a few days, the source reached its highest
gamma-ray flux ever measured. This allowed us to study in some details their
spectral and temporal structures. The rise and decay are asymmetric on
timescales of 6 hours, and the spectral index was significantly harder during
the flares than during the preceding 11 months. We also found that short, very
intense flares put out the same time-integrated energy as long, less intense
flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G.
Tosti, [email protected]. 15 pages, 4 figures, published in The
Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Fermi Large Area Telescope observations of the Vela-X Pulsar Wind Nebula
We report on gamma-ray observations in the off-pulse window of the Vela
pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area
Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova
remnant, which contains several regions of non-thermal emission detected in the
radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT
lies within one of these regions, the 2*3 degrees area south of the pulsar
known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit
radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk.
The 200 MeV to 20 GeV LAT spectrum of this source is well described by a
power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux
above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first
errors represent the statistical error on the fit parameters, while the second
ones are the systematic uncertainties. Detailed morphological and spectral
analyses give strong constraints on the energetics and magnetic field of the
pulsar wind nebula (PWN) system and favor a scenario with two distinct electron
populations.Comment: 21 pages, 5 figures, accepted for publication in Astrophysical
Journa
Fermi LAT Observations of LS I +61 303: First detection of an orbital modulation in GeV Gamma Rays
This Letter presents the first results from the observations of LSI +61 303
using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope
between 2008 August and 2009 March. Our results indicate variability that is
consistent with the binary period, with the emission being modulated at 26.6
+/- 0.5 days. This constitutes the first detection of orbital periodicity in
high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized
by a broad peak after periastron, as well as a smaller peak just before
apastron. The spectrum is best represented by a power law with an exponential
cutoff, yielding an overall flux above 100 MeV of 0.82 +/- 0.03(stat) +/-
0.07(syst) 10^{-6} ph cm^{-2} s^{-1}, with a cutoff at 6.3 +/- 1.1(stat) +/-
0.4(syst) GeV and photon index Gamma = 2.21 +/- 0.04(stat) +/- 0.06(syst).
There is no significant spectral change with orbital phase. The phase of
maximum emission, close to periastron, hints at inverse Compton scattering as
the main radiation mechanism. However, previous very high-energy gamma ray
(>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to
apastron. This and the energy cutoff seen with Fermi suggest the link between
HE and VHE gamma rays is nontrivial.Comment: 7 pages, 5 figures, accepted for publication in ApJ Letters 21 July
200
PSR J1907+0602: A Radio-Faint Gamma-Ray Pulsar Powering a Bright TeV Pulsar Wind Nebula
We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR
J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi
result in a precise position determination for the pulsar of R.A. =
19h07m547(2), decl. = +06:02:16(2) placing the pulsar firmly within the TeV
source extent, suggesting the TeV source is the pulsar wind nebula of PSR
J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100
MeV to above 10 GeV. The phase-averaged power-law index in the energy range E >
0.1 GeV is = 1.76 \pm 0.05 with an exponential cutoff energy E_{c} = 3.6 \pm
0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well
as limits on off-pulse emission associated with the TeV source. We also report
the detection of very faint (flux density of ~3.4 microJy) radio pulsations
with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 \pm
1.1 cm^{-3}pc. This indicates a distance of 3.2 \pm 0.6 kpc and a
pseudo-luminosity of L_{1400} ~ 0.035 mJy kpc^2. A Chandra ACIS observation
revealed an absorbed, possibly extended, compact <(4 arcsec) X-ray source with
significant non-thermal emission at R.A. = 19h07m54.76, decl. = +06:02:14.6
with a flux of 2.3^{+0.6}_{-1.4} X 10^{-14} erg cm^{-2} s^{-1}. From archival
ASCA observations, we place upper limits on any arcminute scale 2--10 keV X-ray
emission of ~ 1 X 10^{-13} erg cm^{-2} s^{-1}. The implied distance to the
pulsar is compatible with that of the supernova remnant G40.5-0.5, located on
the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud
on the nearer side which we discuss as potential birth sites
GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies
The detection of diffuse radio emission associated with clusters of galaxies
indicates populations of relativistic leptons infusing the intracluster medium.
Those electrons and positrons are either injected into and accelerated directly
in the intracluster medium, or produced as secondary pairs by cosmic-ray ions
scattering on ambient protons. Radiation mechanisms involving the energetic
leptons together with decay of neutral pions produced by hadronic interactions
have the potential to produce abundant GeV photons. Here, we report on the
search for GeV emission from clusters of galaxies using data collected by the
Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from
August 2008 to February 2010. Thirty-three galaxy clusters have been selected
according to their proximity and high mass, X-ray flux and temperature, and
indications of non-thermal activity for this study. We report upper limits on
the photon flux in the range 0.2-100 GeV towards a sample of observed clusters
(typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and
spatially resolved models for the high-energy emission, and discuss how these
results constrain the characteristics of energetic leptons and hadrons, and
magnetic fields in the intracluster medium. The volume-averaged
relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in
several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter
- âŠ