118 research outputs found

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    Get PDF
    We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British-German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO-KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network

    All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    Get PDF
    We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from 108-10^{-8} to 10910^{-9} Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0h_0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are 1.1×1025{\sim}1.1\times10^{-25} at 95\% confidence-level. The minimum upper limit of 1.10×10251.10\times10^{-25} is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    Full text link
    We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from 108-10^{-8} to 10910^{-9} Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0h_0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are 1.1×1025{\sim}1.1\times10^{-25} at 95\% confidence-level. The minimum upper limit of 1.10×10251.10\times10^{-25} is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.Comment: 23 main text pages, 17 figure

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run

    Full text link
    We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 MM_\odot -- 1.0M1.0 M_\odot and mass ratio q0.1q \geq 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 yr1\mathrm{yr}^{-1}. We estimate the sensitivity of our search over the entirety of Advanced LIGO's and Advanced Virgo's third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH0.6f_\mathrm{PBH} \gtrsim 0.6 (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out fPBH=1f_\mathrm{PBH} = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH<105f_{\mathrm{DBH}} < 10^{-5} on the fraction of atomic dark matter collapsed into black holes.Comment: https://dcc.ligo.org/P220013

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more

    Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data

    Get PDF

    Constraints on the cosmic expansion history from GWTC-3

    Get PDF
    We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter H(z)H(z), including its current value, the Hubble constant H0H_0. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z)H(z). The source mass distribution displays a peak around 34M34\, {\rm M_\odot}, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a H(z)H(z) measurement, yielding H0=687+12kms1Mpc1H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}} (68%68\% credible interval) when combined with the H0H_0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0H_0 estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8kms1Mpc1H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}} with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent H0H_0 studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0H_0) is the well-localized event GW190814
    corecore