7 research outputs found

    Reproductive biology of Pseudotocinclus tietensis (Siluriformes: Loricariidae: Hypoptopomatinae), a threatened fish species

    Get PDF
    Pseudotocinclus tietensis is endemic to the Upper Tietê River basin and classified as vulnerable. The reproductive biology of this species is still unknown, therefore, we investigated its reproductive strategy and gonad development during its annual reproductive cycle. The fish were collected throughout one year, and histology of the gonads, fecundity and oocyte diameter was conducted. Three phases of gonad maturation were found in males and females (immature, developing, and spawning capable), and the development stages of the gametes were identified within each stage. In the testes, four stages of gamete development were distinguished: spermatogonia, spermatocytes, spermatids and spermatozoa. During spermiation, the spermatozoa were released into the tubular lumen and then continued through the efferent ducts. In the ovaries, five stages of gamete development were identified: chromatin nuclear, perinucleolar, yolk vesicle formation, vitellogenic and ripe. The minimum diameter of ovulating oocytes was 297 µm, and the absolute fecundity was 64 to 306 oocytes. Males with spermatozoa in the lobular lumen and females with vitellogenic and ripe oocytes were found throughout the year. Pseudotocinclus tietensis has asynchronous ovarian development and gametes with fertilization capacity can be eliminated throughout the annual cycle

    Influence of spawning procedure on gametes fertilization success in Salminus hilarii Valenciennes, 1850 (Teleostei: Characidae): Implications for the conservation of this species

    No full text
    Artificial reproduction and gamete fertilization were evaluated in Salminus hilarii wild and domesticated broodstocks. Wild and domesticated broodstocks were artificially induced to reproduction using a carp pituitary treatment. Four groups were considered: Group 1 (G1), fish caught in the wild maintained for three years in the same conditions as the domesticated broodstocks and spawned naturally; Group 2 (G2), broodstock born and raised in captivity and spawned naturally; Group 3 (G3), wild broodstocks, which were manually stripped for gamete collection and dry fertilization; and Group 4 (G4), domesticated males and females, also manually stripped. Oocytes, eggs, and larvae were sampled at different time intervals throughout embryonic development. Yolk sac absorption occurred approximately 24-29 h after hatching. Twenty-six h after hatching, the larvae mouths opened. Cannibalism was identified just 28-30 h after hatching. There was no morphological difference in embryonic development among all groups. The number of released eggs per gram of female was: G1: 83.3 ± 24.5 and G2: 103.8 ± 37.4; however, the fertilization success was lower in G2 (42.0 ± 6.37 %) compared with G1 (54.7 ± 3.02%) (P = 0.011). Hand-stripping of oocytes was not successful and the fertilization rate was zero. The reproduction of this species in captivity is viable, but it is necessary to improve broodstock management to enhance fertilization rates and obtain better fingerling production for restocking programs

    Characterization of lipid metabolism genes and the influence of fatty acid supplementation in the hepatic lipid metabolism of dusky grouper (Epinephelus marginatus)

    No full text
    Dusky grouper is an important commercial fish species in many countries, but some factors such as overfishing has significantly reduced their natural stocks. Aquaculture emerges as a unique way to conserve this species, but very little biological information is available, limiting the production of this endangered species. To understand and generate more knowledge about this species, liver transcriptome sequencing and de novo assembly was performed for E. marginatus by Next Generation Sequencing (NGS). Sequences obtained were used as a tool to validate the presence of key genes relevant to lipid metabolism, and their expression was quantified by qPCR. Moreover, we investigated the influence of supplementing different dietary fatty acids on hepatic lipid metabolism. The results showed that the different fatty acids added to the diet dramatically changed the gene expression of some key enzymes associated with lipid metabolism as well as hepatic fatty acid profiles. Elongase 5 gene expression was shown to influence intermediate hepatic fatty acid elongation in all experimental groups. Hepatic triglycerides reflected the diet composition more than hepatic phospholipids, and were characterized mainly by the high percentage of 18:3n3 in animals fed with a linseed oil rich diet. Results for the saturated and monounsaturated fatty acids suggest a self-regulatory potential for retention and oxidation processes in liver, since in general the tissues did not directly reflect these fatty acid diet compositions. These results indicated that genes involved in lipid metabolism pathways might be potential biomarkers to assess lipid requirements in the formulated diet for this species

    Involvement of pituitary gonadotropins, gonadal steroids and breeding season in sex change of protogynous dusky grouper, Epinephelus marginatus (Teleostei: Serranidae), induced by a non-steroidal aromatase inhibitor

    Get PDF
    Two experiments were performed using the aromatase inhibitor (AI) letrozole (100mg/kg) to promote sex change, from female-to-male, in protogynous dusky grouper. One experiment was performed during the breeding season (spring) and the other at the end of the breeding season (summer). During the spring, AI promoted sex change after 9weeks and the sperm produced was able to fertilize grouper oocytes. During the summer, the sex change was incomplete; intersex individuals were present and sperm was not released by any of the animals. Sex changed gonads had a lamellar architecture; cysts of spermatocytes and spermatozoa in the lumen of the germinal compartment. In the spring, after 4weeks, 11ketotestosterone (11KT) levels were higher in the AI than in control fish, and after 9weeks, coincident with semen release, testosterone levels increased in the AI group, while 11KT returned to the initial levels. Estradiol (E2) levels remained unchanged during the experimental period. Instead of decreasing throughout the period, as in control group, 17 α-OH progesterone levels did not change in the AI-treated fish, resulting in higher values after 9weeks when compared with control fish. fshβ and lhβ gene expression in the AI animals were lower compared with control fish after 9weeks. The use of AI was effective to obtain functional males during the breeding season. The increase in androgens, modulated by gonadotropins, triggered the sex change, enabling the development of male germ cells, whereas a decrease in E2 levels was not required to change sex in dusky grouper. © 2013 Elsevier Inc
    corecore