19,928 research outputs found
Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3
We present a study of the effect of very high pressure on the orthorhombic
perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to
53.2 GPa. The experimental results yield a structural and insulator-to-metal
phase transition close to 50 GPa, from an orthorhombic to a metrically cubic
structure. The phase transition is of first order with a pressure hysteresis of
about 6 GPa. The observed behavior under very high pressure might well be a
general feature in rare-earth manganites.Comment: 4 pages, 3 figures and 2 table
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
An optimization procedure determining the ideal configuration at the
microstructural level of ferroelectric (FE) materials is applied to maximize
piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from
that of single crystals because of the presence of crystallites (grains)
possessing crystallographic axes aligned imperfectly. The piezoelectric
properties of a polycrystalline (ceramic) FE is inextricably related to the
grain orientation distribution (texture). The set of combination of variables,
known as solution space, which dictates the texture of a ceramic is unlimited
and hence the choice of the optimal solution which maximizes the
piezoelectricity is complicated. Thus a stochastic global optimization combined
with homogenization is employed for the identification of the optimal granular
configuration of the FE ceramic microstructure with optimum piezoelectric
properties. The macroscopic equilibrium piezoelectric properties of
polycrystalline FE is calculated using mathematical homogenization at each
iteration step. The configuration of grains characterised by its orientations
at each iteration is generated using a randomly selected set of orientation
distribution parameters. Apparent enhancement of piezoelectric coefficient
is observed in an optimally oriented BaTiO single crystal. A
configuration of crystallites, simultaneously constraining the orientation
distribution of the c-axis (polar axis) while incorporating ab-plane
randomness, which would multiply the overall piezoelectricity in ceramic
BaTiO is also identified. The orientation distribution of the c-axes is
found to be a narrow Gaussian distribution centred around . The
piezoelectric coefficient in such a ceramic is found to be nearly three times
as that of the single crystal.Comment: 11 pages, 7 figure
Generalization of Dirac Non-Linear Electrodynamics, and Spinning Charged Particles
In this note we generalized the Dirac non-linear electrodynamics, by
introducing two potentials (namely, the vector potential A and the
pseudo-vector potential gamma^5 B of the electromagnetic theory with charges
and magnetic monopoles) and by imposing the pseudoscalar part of the product
omega.omega* to be zero, with omega = A + gamma^5 B. We show that the field
equations of such a theory possess a soliton-like solution which can represent
a priori a "charged particle", since it is endowed with a Coulomb field plus
the field of a magnetic dipole. The rest energy of the soliton is finite, and
the angular momentum stored in its electromagnetic field can be identified
--for suitable choices of the parameters-- with the spin of the charged
particle. Thus this approach seems to yield a classical model for the charged
(spinning) particle, which does not meet the problems met by earlier attempts
in the same direction.Comment: standard LaTeX file; 16 pages; it is a corrected version of a paper
appeared in Found. Phys. (issue in honour of A.O.Barut) 23 (1993) 46
Galaxy disks do not need to survive in the L-CDM paradigm: the galaxy merger rate out to z~1.5 from morpho-kinematic data
About two-thirds of present-day, large galaxies are spirals such as the Milky
Way or Andromeda, but the way their thin rotating disks formed remains
uncertain. Observations have revealed that half of their progenitors, six
billion years ago, had peculiar morphologies and/or kinematics, which exclude
them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of
similar mass, are found to be the likeliest driver for such strong
peculiarities. However, thin disks are fragile and easily destroyed by such
violent collisions, which creates a critical tension between the observed
fraction of thin disks and their survival within the L-CDM paradigm. Here we
show that the observed high occurrence of mergers amongst their progenitors is
only apparent and is resolved when using morpho-kinematic observations which
are sensitive to all the phases of the merging process. This provides an
original way of narrowing down observational estimates of the galaxy merger
rate and leads to a perfect match with predictions by state-of-the-art L-CDM
semi-empirical models with no particular fine-tuning needed. These results
imply that half of local thin disks do not survive but are actually rebuilt
after a gas-rich major merger occurring in the past nine billion years, i.e.,
two-thirds of the lifetime of the Universe. This emphasizes the need to study
how thin disks can form in halos with a more active merger history than
previously considered, and to investigate what is the origin of the gas
reservoir from which local disks would reform.Comment: 19 pages, 7 figures, 2 tables. Accepted in ApJ. V2 to match proof
corrections and added reference
The low dimensional dynamical system approach in General Relativity: an example
In this paper we explore one of the most important features of the Galerkin
method, which is to achieve high accuracy with a relatively modest
computational effort, in the dynamics of Robinson-Trautman spacetimes.Comment: 7 pages, 5 figure
Generating functions for generalized binomial distributions
In a recent article a generalization of the binomial distribution associated
with a sequence of positive numbers was examined. The analysis of the
nonnegativeness of the formal expressions was a key-point to allow to give them
a statistical interpretation in terms of probabilities. In this article we
present an approach based on generating functions that solves the previous
difficulties: the constraints of nonnegativeness are automatically fulfilled, a
complete characterization in terms of generating functions is given and a large
number of analytical examples becomes available.Comment: PDFLaTex, 27 pages, 5 figure
- …