19,928 research outputs found

    Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3

    Full text link
    We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition close to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.Comment: 4 pages, 3 figures and 2 table

    Optimal configuration of microstructure in ferroelectric materials by stochastic optimization

    Full text link
    An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterised by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. Apparent enhancement of piezoelectric coefficient d33d_{33} is observed in an optimally oriented BaTiO3_3 single crystal. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3_{3} is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centred around 45∘{45^\circ}. The piezoelectric coefficient in such a ceramic is found to be nearly three times as that of the single crystal.Comment: 11 pages, 7 figure

    Generalization of Dirac Non-Linear Electrodynamics, and Spinning Charged Particles

    Full text link
    In this note we generalized the Dirac non-linear electrodynamics, by introducing two potentials (namely, the vector potential A and the pseudo-vector potential gamma^5 B of the electromagnetic theory with charges and magnetic monopoles) and by imposing the pseudoscalar part of the product omega.omega* to be zero, with omega = A + gamma^5 B. We show that the field equations of such a theory possess a soliton-like solution which can represent a priori a "charged particle", since it is endowed with a Coulomb field plus the field of a magnetic dipole. The rest energy of the soliton is finite, and the angular momentum stored in its electromagnetic field can be identified --for suitable choices of the parameters-- with the spin of the charged particle. Thus this approach seems to yield a classical model for the charged (spinning) particle, which does not meet the problems met by earlier attempts in the same direction.Comment: standard LaTeX file; 16 pages; it is a corrected version of a paper appeared in Found. Phys. (issue in honour of A.O.Barut) 23 (1993) 46

    Galaxy disks do not need to survive in the L-CDM paradigm: the galaxy merger rate out to z~1.5 from morpho-kinematic data

    Full text link
    About two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the L-CDM paradigm. Here we show that the observed high occurrence of mergers amongst their progenitors is only apparent and is resolved when using morpho-kinematic observations which are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predictions by state-of-the-art L-CDM semi-empirical models with no particular fine-tuning needed. These results imply that half of local thin disks do not survive but are actually rebuilt after a gas-rich major merger occurring in the past nine billion years, i.e., two-thirds of the lifetime of the Universe. This emphasizes the need to study how thin disks can form in halos with a more active merger history than previously considered, and to investigate what is the origin of the gas reservoir from which local disks would reform.Comment: 19 pages, 7 figures, 2 tables. Accepted in ApJ. V2 to match proof corrections and added reference

    The low dimensional dynamical system approach in General Relativity: an example

    Get PDF
    In this paper we explore one of the most important features of the Galerkin method, which is to achieve high accuracy with a relatively modest computational effort, in the dynamics of Robinson-Trautman spacetimes.Comment: 7 pages, 5 figure

    Generating functions for generalized binomial distributions

    Full text link
    In a recent article a generalization of the binomial distribution associated with a sequence of positive numbers was examined. The analysis of the nonnegativeness of the formal expressions was a key-point to allow to give them a statistical interpretation in terms of probabilities. In this article we present an approach based on generating functions that solves the previous difficulties: the constraints of nonnegativeness are automatically fulfilled, a complete characterization in terms of generating functions is given and a large number of analytical examples becomes available.Comment: PDFLaTex, 27 pages, 5 figure
    • …
    corecore