705 research outputs found

    Pesticide use negatively affects bumble bees across European landscapes

    Get PDF
    Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.Results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries find pesticides in bumble bee pollen to be associated with reduced colony performance, especially in areas of intensive agriculture

    Distribution of infectious and parasitic agents among three sentinel bee species across European agricultural landscapes

    Get PDF
    Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments

    Ecological traits interact with landscape context to determine bees' pesticide risk

    Get PDF
    Widespread contamination of ecosystems with pesticides threatens non-target organisms. However, the extent to which life-history traits affect pesticide exposure and resulting risk in different landscape contexts remains poorly understood. We address this for bees across an agricultural land-use gradient based on pesticide assays of pollen and nectar collected by Apis mellifera, Bombus terrestris and Osmia bicornis, representing extensive, intermediate and limited foraging traits. We found that extensive foragers (A. mellifera) experienced the highest pesticide risk-additive toxicity-weighted concentrations. However, only intermediate (B. terrestris) and limited foragers (O. bicornis) responded to landscape context-experiencing lower pesticide risk with less agricultural land. Pesticide risk correlated among bee species and between food sources and was greatest in A. mellifera-collected pollen-useful information for future postapproval pesticide monitoring. We provide foraging trait- and landscape-dependent information on the occurrence, concentration and identity of pesticides that bees encounter to estimate pesticide risk, which is necessary for more realistic risk assessment and essential information for tracking policy goals to reduce pesticide risk.Analysing pesticide residues in pollen and nectar collected by three bee species along a land-use gradient, the authors show that extensive foragers like Apis mellifera have higher pesticide risk than species that forage at intermediate or limited ranges, irrespective of landscape context

    American foulbrood in a honeybee colony: spore-symptom relationship and feedbacks between disease and colony development

    Get PDF
    Background: The most severe bacterial disease of honeybees is American foulbrood (AFB. The epidemiology of AFB is driven by the extreme spore resilience, the difficulty of bees to remove these spores, and the considerable incidence of undetected spore-producing colonies. The honeybee collective defence mechanisms and their feedback on colony development, which involves a division of labour at multiple levels of colony organization, are difficult to model. To better predict disease outbreaks we need to understand the feedback between colony development and disease progression within the colony. We therefore developed Bayesian models with data from forty AFB-diseased colonies monitored over an entire foraging season to (i) investigate the relationship between spore production and symptoms, (ii) disentangle the feedback loops between AFB epidemiology and natural colony development, and (iii) discuss whether larger insect societies promote or limit within-colony disease transmission. Results: Rather than identifying a fixed spore count threshold for clinical symptoms, we estimated the probabili-ties around the relationship between spore counts and symptoms, taking into account modulators such as brood amount/number of bees and time post infection. We identified a decrease over time in the bees-to-brood ratio related to disease development, which should ultimately induce colony collapse. Lastly, two contrasting theories pre-dict that larger colonies could promote either higher (classical epidemiological SIR-model) or lower (increasing spatial nest segregation and more effective pathogen removal) disease prevalence. Conclusions: AFB followed the predictions of the SIR-model, partly because disease prevalence and brood removal are decoupled, with worker bees acting more as disease vectors, infecting new brood, than as agents of social immu-nity, by removing infected brood. We therefore established a direct link between disease prevalence and social group size for a eusocial insect. We furthermore provide a probabilistic description of the relationship between AFB spore counts and symptoms, and how disease development and colony strength over a season modulate this relationship. These results help to better understand disease development within honeybee colonies, provide important estimates for further epidemiological modelling, and gained important insights into the optimal sampling strategy for practical beekeeping and honeybee research

    Landscapes of risk: A comparative analysis of landscape metrics for the ecotoxicological assessment of pesticide risk to bees

    Get PDF
    Pesticide use in agricultural landscapes creates environmental contamination that is heterogenous in space and time. Mobile organisms, such as bees, are exposed to multiple contamination sources when visiting patches that vary in the amount, timing and toxicity of pesticides used. Yet, environmental risk assessments (ERA) typically fail to consider this heterogeneity, in part because of the complexities of estimating exposure to different pesticides, and subsequent risk at organism-relevant scales. We use pesticide assays of 269 bee-collected pollen samples to understand the spatiotemporal variability of risk across a network of 41 field sites in southern Sweden. Observed bee pesticide risk is calculated based on compound-specific residue quantifications in pollen and standardized toxicity data. We then compare the ability of three classes of landscape-scale variables to predict this risk: (1) landscape composition and configuration metrics, (2) landscape load based on national pesticide use data and (3) predictions from a newly developed bee pesticide exposure model. Based on use data, 10 crops account for 81% of the total risk. We detected 49 pesticide compounds in bee-collected pollen. Although herbicides and fungicides constitute the bulk of detected pesticides, both in frequency and amount quantified, unsurprisingly, insecticides contribute the most to risk. Landscape composition and configuration metrics did not predict observed pesticide risk, and interactions with bee species indicate taxa-dependency in predictions. Landscape load predicted observed risk consistently between taxa. Risk estimates from our exposure model were strongly predictive but only when considering realized risk (i.e., risk estimates based on prior pesticide use information). Synthesis and applications. Predicting pesticide risk based on landscape patterns could enable landscape-scale ERA. However, simple metrics of landscape pattern, such as proportion of agricultural land, are not sufficient. We found that risk observed in bee-collected pollen was best predicted when integrating spatialized pesticide use in the pesticide exposure model, underscoring the importance of such data for research, monitoring and mitigation. Further, we propose a guidance framework for future landscape ecotoxicological risk analyses that clarifies data needs relative to risk prediction goals.Predicting pesticide risk based on landscape patterns could enable landscape-scale ERA. However, simple metrics of landscape pattern, such as proportion of agricultural land, are not sufficient. We found that risk observed in bee-collected pollen was best predicted when integrating spatialized pesticide use in the pesticide exposure model, underscoring the importance of such data for research, monitoring and mitigation. Further, we propose a guidance framework for future landscape ecotoxicological risk analyses that clarifies data needs relative to risk prediction goals.imag

    Shift in virus composition in honeybees (Apis mellifera) following worldwide invasion by the parasitic mite and virus vector Varroa destructor

    Get PDF
    Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees

    Effect of oral infection with Kashmir bee virus and Israeli acute paralysis virus on bumblebee (Bombus terrestris) reproductive success

    Get PDF
    Israeli acute paralysis virus (IAPV) together with Acute bee paralysis virus (ABPV) and Kashmir bee virus (KBV) constitute a complex of closely related dicistroviruses. They are infamous for their high mortality after injection in honeybees. These viruses have also been reported in non-Apis hymenopteran pollinators such as bumblebees, which got infected with IAPV when placed in the same greenhouse with IAPV infected honeybee hives. Here we orally infected Bombus terrestris workers with different doses of either IAPV or KBV viral particles. The success of the infection was established by analysis of the bumblebees after the impact studies: 50 days after infection. Doses of 0.5 x 10(7) and 1 x 10(7) virus particles per bee were infectious over this period, for IAPV and KBV respectively, while a dose of 0.5 x 10(6) IAPV particles per bee was not infectious. The impact of virus infection was studied in micro-colonies consisting of 5 bumblebees, one of which becomes a pseudo-queen which proceeds to lay unfertilized (drone) eggs. The impact parameters studied were: the establishment of a laying pseudo-queen, the timing of egg-laying, the number of drones produced, the weight of these drones and worker mortality. In this setup KBV infection resulted in a significant slower colony startup and offspring production, while only the latter can be reported for IAPV. Neither virus increased worker mortality, at the oral doses used. We recommend further studies on how these viruses transmit between different pollinator species. It is also vital to understand how viral prevalence can affect wild bee populations because disturbance of the natural host-virus association may deteriorate the already critically endangered status of many bumblebee species

    SLU:s verksamhet med bin

    Get PDF
    Under 2014/15 var vi sammanlagt sju personer i den grupp pÄ SLU som arbetar med olika aspekter pÄ hÀlsa och sjukdomar hos honungsbin. Gruppen utökades under sommaren 2014 med tvÄ nya forskarstuderande/doktorander; Sepideh Lamei som ska studera mjölksyrabakteriers betydelse för bins hÀlsa, och Srinivas Thaduri som ska studera sammansÀttningen av mikroorganismer hos den gotlÀndska population av bin som överlevt och klarar sig utan behandling mot varroakvalstret (de sÄ kallade Bondbina). En kortfattad beskrivning av deras respektive projekt kan ni lÀsa om lÀngre ned i texten

    Varroakvalstrets effekt pÄ virus i angripna honungsbisamhÀllen

    Get PDF
    Vilken effekt har varroakvalster pÄ de virus som infekterar bisamhÀllen? Forskare vid INRA (Frankrikes nationella institution för jordbruksforskning) i Avignon, Frankrike, University of Otago i Nya Zeeland och Sveriges lantbruksuniversitet (SLU), nyttjade en unik situation i Nya Zeeland dÀr landet, liksom Sverige, har varroaangripna respektive icke angripna regioner. Varroa Àr relativt nyetablerad i Nya Zeeland. Den pÄvisades först pÄ Nordön Är 2000, och har stadigt spridits söderut under de 14 Ären som gÄtt sedan introduktionen. Forskarna har undersökt virusprofilen hos bisamhÀllena sedan etablering av kvalstret i de olika regionerna. Studien, som publicerades 2014, visar en drastisk Àndring av det virala landskapet i bisamhÀllena som sammanfaller med etablering av varroa, vilket ökar risken för synergier mellan olika virus som Àr skadliga för bina

    SLU redovisar tre studier om effekter pÄ virusnivÄer

    Get PDF
    Varroakvalstret (Varroa destructor) Àr ett av de största hoten mot biodling vÀrlden över. Utan behandling dör angripna bisamhÀllen vanligtvis inom nÄgra Är, men inte pÄ grund av sjÀlva kvalsterangreppet i sig utan av de virusinfektioner som sprids med och utvecklas effektivare pÄ grund av kvalstren. MÄnga olika slags virus har hittats hos honungsbin, och nÄgra av dem Àr starkt knutna till varroakvalstret
    • 

    corecore