1,291 research outputs found
CMOS design of cellular APAPs and FPAPAPs: an overview
CNN-based analog visual microprocessors have similarities with the so-called Single Instruction Multiple Data systems, although they work directly on analog signal representations obtained through embedded optical sensors and hence do not need a frontend sensory plane or analog-to-digital converters. The architecture of these visual microprocessors is illustrated in the paper through two prototype chips, namely: ACE4K and ACE16K. In both cases, as in other related chips the architecture includes a core array of interconnected elementary processing units, surrounded by a global circuitry.Office of Naval Research N00014-00-10429Comisión Interministerial de Ciencia y Tecnología TIC-1999-082
Accurate and simple modeling of amplifier dc gain nonlinearity in switched-capacitor circuits
This paper presents an accurate and simple model for dc gain nonlinearity of operational amplifiers used in the switched-capacitor circuits such as the sigma-delta modulators. The proposed model can simply be used in the time-domain system level simulation of sigma-delta modulators to evaluate the effect of amplifier's dc gain nonlinearity on the overall linearity of the modulator as well as in the other switched- capacitor circuits as explored in the paper.Comisión Interministerial de Ciencia y Tecnología TIC2003-0235
Learning in neuro/fuzzy analog chips
This paper focus on the design of adaptive mixed-signal fuzzy chips. These chips have parallel architecture and feature electrically-controlable surface maps. The design methodology is based on the use of composite transistors - modular and well suited for design automation. This methodology is supported by dedicated, hardware-compatible learning algorithms that combine weight-perturbation and outstar
Switched-Current Chaotic Neurons
The Letter presents two nonlinear CMOS current-mode circuits that implement neuron soma equations for chaotic neural networks. They have been fabricated in a double-metal, single-poly 1.6µm CMOS technology. The neuron soma circuits use a novel, highly accurate CMOS circuit strategy to realise piecewise-linear characteristics in the current-mode domain. Their prototypes obtain reduced area and low voltage power supply (down to 3V) with a clock frequency of 500 kHz
CMOS current-mode chaotic neurons
This paper presents two nonlinear CMOS current-mode circuits that implement neuron soma equations for chaotic neural networks, and another circuit to realize programmable current-mode synapse using CMOS-compatible BJT's. They have been fabricated in a double-metal, single-poly 1.6 /spl mu/m CMOS technology and their measured performance reached the expected function and specifications. The neuron soma circuits use a novel, highly accurate CMOS circuit strategy to realize piecewise-linear characteristics in the current-mode domain. Their prototypes obtain reduced area and low voltage power supply (down to 3 V) with clock frequency of 500 kHz. As regard to the synapse circuit, it obtains large linearity and continuous, linear, weight adjustment by exploration of the exponential-law operation of CMOS-BJT's. The full accordance observed between theory and measurements supports the development of future analog VLSI chaotic neural networks to emulate biological systems and advanced computation
Integrated chaos generators
This paper surveys the different design issues, from mathematical model to silicon, involved on the design of integrated circuits for the generation of chaotic behavior.Comisión Interministerial de Ciencia y Tecnología 1FD97-1611(TIC)European Commission ESPRIT 3110
Modular Design of Adaptive Analog CMOS Fuzzy Controller Chips
Analog circuits are natural candidates to design fuzzy chips with optimum speed/power figures for precision up to about 1%. This paper presents a methodology and circuit blocks to realize fuzzy controllers in the form of analog CMOS chips. These chips can be made to adapt their function through electrical control. The proposed design methodology emphasizes modularity and simplicity at the circuit level -- prerequisites to increasing processor complexity and operation speed. The paper include measurements from a silicon prototype of a fuzzy controller chip in CMOS 1.5μm single-poly technology
Using Building Blocks to Design Analog Neuro-Fuzzy Controllers
We present a parallel architecture for fuzzy controllers and a methodology for their realization as analog CMOS chips for low- and medium-precision applications. These chips can be made to learn through the adaptation of electrically controllable parameters guided by a dedicated hardware-compatible learning algorithm. Our designs emphasize simplicity at the circuit level—a prerequisite for increasing processor complexity and operation speed. Examples include a three-input, four-rule controller chip in 1.5-μm CMOS, single-poly, double-metal technology
CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit
This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current
Design considerations for integrated continuous-time chaotic oscillators
This paper presents an optimization procedure to choose the chaotic state equation which is best suited for implementation using Gm-C integrated circuit techniques. The paper also presents an analysis of the most significant hardware nonidealities of Gm-C circuits on the chaotic operation-the basis to design robust integrated circuits with reproducible and easily controllable behavior. The techniques in the paper are illustrated through a circuit fabricated in 2.4-/iin double-poly technology.Comisión Interministerial de Ciencia y Tecnología TIC 96-1392-CO2-
- …