65 research outputs found

    CONSTANS–FKBP12 interaction contributes to modulation of photoperiodic flowering in Arabidopsis

    Get PDF
    Flowering time is a key process in plant development. Photoperiodic signals play a crucial role in the floral transition in Arabidopsis thaliana, and the protein CONSTANS (CO) has a central regulatory function that is tightly regulated at the transcriptional and post-translational levels. The stability of CO protein depends on a light-driven proteasome process that optimizes its accumulation in the evening to promote the production of the florigen FLOWERING LOCUS T (FT) and induce seasonal flowering. To further investigate the post-translational regulation of CO protein we have dissected its interactome network employing in vivo and in vitro assays and molecular genetics approaches. The immunophilin FKBP12 has been identified in Arabidopsis as a CO interactor that regulates its accumulation and activity. FKBP12 and CO interact through the CCT domain, affecting the stability and function of CO. fkbp12 insertion mutants show a delay in flowering time, while FKBP12 overexpression accelerates flowering, and these phenotypes can be directly related to a change in accumulation of FT protein. The interaction is conserved between the Chlamydomonas algal orthologs CrCO–CrFKBP12, revealing an ancient regulatory step in photoperiod regulation of plant development.Ministerio de Ciencia BIO2014-52425-P, BIO2017-83629-RJunta de Andalucía P08-AGR-03582, BIO-281European Union GA83831

    Physico-chemical properties of sporadic meteoroids inferred from de continuous monitoring of meteor and fireball activity

    Get PDF
    Sporadic meteoroids make up the bulk of the meteoroids striking the Earth. The combined action of gravitational and radiation forces have reduced the coherence of the initial orbits of these particles to such a degree that they have become so diffuse as to be no longer recognizable as streams and merge them together into the sporadic meteoroid complex. The development of a continuous meteor and fireball monitoring campaign is fundamental to characterize the physico-chemical properties of sporadic meteoroids. In this context, we present here the preliminary analysis of a sporadic bolide simultaneously imaged in July 2012 from two meteor observing stations operated by the SPanish Meteor Network (SPMN)

    Identification and characterization of Diaporthe spp. associated with twig cankers and shoot blight of almonds in Spain

    Get PDF
    [EN] Two hundred and twenty-fiveDiaportheisolates were collected from 2005 to 2019 in almond orchards showing twig cankers and shoot blight symptoms in five different regions across Spain. Multilocus DNA sequence analysis with five loci (ITS,tub,tef-1 alpha,calandhis), allowed the identification of four knownDiaporthespecies, namely:D. amygdali,D. eres,D. foeniculinaandD. phaseolorum. Moreover, a novel phylogenetic species,D. mediterranea, was described.Diaportheamygdaliwas the most prevalent species, due to the largest number of isolates (85.3%) obtained from all sampled regions. The second most frequent species wasD. foeniculina(10.2%), followed byD. mediterranea(3.6%),D.eresandD. phaseolorum, each with only one isolate. Pathogenicity tests were performed using one-year-old almond twigs cv. Vayro and representative isolates of the different species. Except forD. foeniculinaandD. phaseolorum, allDiaporthespecies were able to cause lesions significantly different from those developed on the uninoculated controls.Diaporthe mediterraneacaused the most severe symptoms. These results confirmD. amygdalias a key pathogen of almonds in Spain. Moreover, the new species,D. mediterranea, should also be considered as a potential important causal agent of twig cankers and shoot blight on this crop.Research funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), grants RTA2017-00009-C04-01, -02, -03 and -04 and with matching funds from the European Regional Development Fund (ERDF). G. Elena and C. Agusti-Brisach were supported by the Spanish post-doctoral grants "Juan de la Cierva-Formacion" and "Juan de la Cierva-Incorporacion", respectively. J. Luque and X. Miarnau were partially supported by the CERCA program, Generalitat de Catalunya. D. Gramaje was supported by the Ramon y Cajal program, Spanish Government (RYC-2017-23098).León Santana, M.; Berbegal Martinez, M.; Rodríguez-Reina, JM.; Elena, G.; Abad Campos, P.; Ramón-Albalat, A.; Olmo, D.... (2020). Identification and characterization of Diaporthe spp. associated with twig cankers and shoot blight of almonds in Spain. Agronomy. 10(8):1-23. https://doi.org/10.3390/agronomy10081062S123108Food and Agriculture Organization of the United Nationshttp://www.fao.org/faostat/es/#datDiogo, E. L. F., Santos, J. M., & Phillips, A. J. L. (2010). Phylogeny, morphology and pathogenicity of Diaporthe and Phomopsis species on almond in Portugal. Fungal Diversity, 44(1), 107-115. doi:10.1007/s13225-010-0057-xTuset, J. J., & Portilla, M. A. T. (1989). Taxonomic status of Fusicoccum amygdali and Phomopsis amygdalina. Canadian Journal of Botany, 67(5), 1275-1280. doi:10.1139/b89-168TUSET, J. J., HINAREJOS, C., & PORTILLA, M. T. (1997). Incidence of Phomopsis amygdali, Botryosphaeria berengeriana and Valsa cincta diseases in almond under different control strategies. EPPO Bulletin, 27(4), 449-454. doi:10.1111/j.1365-2338.1997.tb00664.xUdayanga, D., Liu, X., Crous, P. W., McKenzie, E. H. C., Chukeatirote, E., & Hyde, K. D. (2012). A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity, 56(1), 157-171. doi:10.1007/s13225-012-0190-9Rossman, A. Y., Adams, G. C., Cannon, P. F., Castlebury, L. A., Crous, P. W., Gryzenhout, M., … Walker, D. M. (2015). Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus, 6(1), 145-154. doi:10.5598/imafungus.2015.06.01.09Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia - Molecular Phylogeny and Evolution of Fungi, 31(1), 1-41. doi:10.3767/003158513x666844Gao, Y., Liu, F., Duan, W., Crous, P. W., & Cai, L. (2017). Diaporthe is paraphyletic. IMA Fungus, 8(1), 153-187. doi:10.5598/imafungus.2017.08.01.11Dissanayake, A. (2017). The current status of species in Diaporthe. Mycosphere, 8(5), 1106-1156. doi:10.5943/mycosphere/8/5/5Santos, L., Alves, A., & Alves, R. (2017). Evaluating multi-locus phylogenies for species boundaries determination in the genusDiaporthe. PeerJ, 5, e3120. doi:10.7717/peerj.3120Lawrence, D. P., Travadon, R., & Baumgartner, K. (2015). Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia, 107(5), 926-940. doi:10.3852/14-353Gramaje, D., Agustí-Brisach, C., Pérez-Sierra, A., Moralejo, E., Olmo, D., Mostert, L., … Armengol, J. (2012). Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia - Molecular Phylogeny and Evolution of Fungi, 28(1), 1-13. doi:10.3767/003158512x626155GARDES, M., & BRUNS, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. doi:10.1111/j.1365-294x.1993.tb00005.xTravadon, R., Lawrence, D. P., Rooney-Latham, S., Gubler, W. D., Wilcox, W. F., Rolshausen, P. E., & Baumgartner, K. (2015). Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology, 119(1), 53-66. doi:10.1016/j.funbio.2014.11.002O’Donnell, K., & Cigelnik, E. (1997). Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the FungusFusariumAre Nonorthologous. Molecular Phylogenetics and Evolution, 7(1), 103-116. doi:10.1006/mpev.1996.0376Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323-1330. doi:10.1128/aem.61.4.1323-1330.1995Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115-180. doi:10.3114/sim0011Udayanga, D., Castlebury, L. A., Rossman, A. Y., & Hyde, K. D. (2014). Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia - Molecular Phylogeny and Evolution of Fungi, 32(1), 83-101. doi:10.3767/003158514x679984Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171-180. doi:10.1111/j.1096-0031.2010.00329.xRonquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. doi:10.1093/sysbio/sys029Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. doi:10.1093/bioinformatics/btu033Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.xDuthie, J. A. (1997). Models of the Response of Foliar Parasites to the Combined Effects of Temperature and Duration of Wetness. Phytopathology®, 87(11), 1088-1095. doi:10.1094/phyto.1997.87.11.1088Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-3http://CRAN.R-project.org/package=agricolaeVan Niekerk, J. M., Groenewald, J. Z., Farr, D. F., Fourie, P. H., Halleen, F., & Crous, P. W. (2005). Reassessment ofPhomopsisspecies on grapevines. Australasian Plant Pathology, 34(1), 27. doi:10.1071/ap04072Lesuthu, P., Mostert, L., Spies, C. F. J., Moyo, P., Regnier, T., & Halleen, F. (2019). Diaporthe nebulae sp. nov. and First Report of D. cynaroidis, D. novem, and D. serafiniae on Grapevines in South Africa. Plant Disease, 103(5), 808-817. doi:10.1094/pdis-03-18-0433-reGuarnaccia, V., Groenewald, J. Z., Woodhall, J., Armengol, J., Cinelli, T., Eichmeier, A., … Crous, P. W. (2018). Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia - Molecular Phylogeny and Evolution of Fungi, 40(1), 135-153. doi:10.3767/persoonia.2018.40.06Varjas, V., Vajna, L., Izsépi, F., Nagy, G., & Pájtli, É. (2017). First Report of Phomopsis amygdali Causing Twig Canker on Almond in Hungary. Plant Disease, 101(9), 1674. doi:10.1094/pdis-03-17-0365-pdnMichailides, T. J., & Thomidis, T. (2006). First Report of Phomopsis amygdali Causing Fruit Rot on Peaches in Greece. Plant Disease, 90(12), 1551-1551. doi:10.1094/pd-90-1551cLópez-Moral, A., Lovera, M., Raya, M. del C., Cortés-Cosano, N., Arquero, O., Trapero, A., & Agustí-Brisach, C. (2020). Etiology of Branch Dieback and Shoot Blight of English Walnut Caused by Botryosphaeriaceae and Diaporthe Species in Southern Spain. Plant Disease, 104(2), 533-550. doi:10.1094/pdis-03-19-0545-reAdaskaveg, J. E., Förster, H., & Connell, J. H. (1999). First Report of Fruit Rot and Associated Branch Dieback of Almond in California Caused by a Phomopsis Species Tentatively Identified as P. amygdali. Plant Disease, 83(11), 1073-1073. doi:10.1094/pdis.1999.83.11.1073cFarr, D. F., Castlebury, L. A., & Pardo-Schultheiss, R. A. (1999). Phomopsis amygdali causes peach shoot blight of cultivated peach trees in the southeastern United States. Mycologia, 91(6), 1008-1015. doi:10.1080/00275514.1999.12061111Mostert, L., Crous, P. W., Kang, J.-C., & Phillips, A. J. L. (2001). Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia, 93(1), 146-167. doi:10.1080/00275514.2001.12061286KANEMATSU, S., YOKOYAMA, Y., KOBAYASHI, T., KUDO, A., & OHTSU, Y. (1999). Taxonomic Reassessment of the Causal Fungus of Peach Fusicoccum Canker in Japan. Japanese Journal of Phytopathology, 65(5), 531-536. doi:10.3186/jjphytopath.65.531Dai, F. M., Zeng, R., & Lu, J. P. (2012). First Report of Twig Canker on Peach Caused by Phomopsis amygdali in China. Plant Disease, 96(2), 288-288. doi:10.1094/pdis-04-11-0321Bai, Q., Zhai, L., Chen, X., Hong, N., Xu, W., & Wang, G. (2015). Biological and Molecular Characterization of Five Phomopsis Species Associated with Pear Shoot Canker in China. Plant Disease, 99(12), 1704-1712. doi:10.1094/pdis-03-15-0259-reMeng, L., Yu, C., Wang, C., & Li, G. (2018). First Report of Diaporthe amygdali Causing Walnut Twig Canker in Shandong Province of China. Plant Disease, 102(9), 1859-1859. doi:10.1094/pdis-01-18-0192-pdnSantos, L. (2017). Diaporthe species on Rosaceae with descriptions of D. pyracanthae sp. nov. and D. malorum sp. nov. Mycosphere, 8(5), 485-511. doi:10.5943/mycosphere/8/5/

    Groundwater abstraction has caused extensive ecological damage to the Doñana World Heritage Site, Spain

    Get PDF
    Se incluye información suplementaria.Acreman et al. (2022) reviewed evidence for ecological damage to the Doñana wetlands (UNESCO World Heritage Site [WHS] and Ramsar site), Spain, associated with intensification of groundwater use, particularly for agriculture. Acreman et al. presented a multistep methodology for evidence-based risk assessment that involves identification of conservation issues, and a systematic review of scientific evidence for ecological damage and its causes. However, they involved few local scientists, used a questionable methodology in stakeholder selection and involvement, used a flawed conceptual framework, and an incomplete literature review. We propose improvements to their methodology. They overlooked or misinterpreted key evidence, and underestimated the impacts that abstraction for irrigation for red fruits (mainly strawberries), rice and other crops has had on Doñana and its biodiversity. They reported groundwater level depletion of up to 10 m in the deep aquifer, but wrongly concluded that there is no evidence for impacts on the natural marsh ecosystem, the dune ponds or the ecotone. Groundwater drawdowns are actually up to 20 m, and have inverted the formerly ascending vertical hydraulic gradient in discharge areas. Phreatic levels have been lowered from 0.5 to 2 m in some areas. Groundwater abstraction has caused multiple ecological impacts to temporary ponds and marshes in the WHS, as well as to terrestrial vegetation, and should be urgently reduced. Furthermore, Acreman et al. focused on groundwater quantity while overlooking the importance of severe impacts on quality of both surface and groundwater, intimately connected to the use of agrochemicals for irrigated crops.Part of this work (marsh hydroperiod and water depth) has been funded by eLTER Plus project (INFRAIA, Horizon 2020, Agreement No 871128) and FEDER actions [SUMHAL, LIFEWATCH-2019-09-CSIC-13, POPE 2014-2020] by the Ministry of Science, Innovation and Universities, Subtask LWE2103022: Integration into VRE in the framework of the CSIC Interdisciplinary Thematic Platforms (PTI) PTI EcoBioDiv and Teledetect. PMRG was funded by the Portuguese Foundation for Science and Technology (FCT), through the Individual Stimulus to Scientific Employment Programme with the 2020.03356.CEECIND grant, and Forest Research Centre by the FCT (UIDB/00239/2020) grant.N

    Comparative study of three different routes of experimental inoculation of the orf virus

    Get PDF
    Three different methods of inducing experimental infection of lambs with orf virus (ORFV), the cause of Contagious Ecthyma, were examined in nine animals; intradermal inoculation, subcutaneous injection and epithelial scarification. The objective was to identify the most appropriate experimental method to reproduce the disease with lesions of similar severity in all infected animals. Subcutaneous inoculation failed to reproduce orf lesions in two of the three infected animals, whereas both the groups that were inoculated by intradermal and scarification routes, respectively, displayed a significantly higher number of lesions at 12 dpi than the group inoculated subcutaneously. However, the lesions following scarification spread from the inoculation site with no ORFV-associated lesions found in other areas of the mucous membrane or skin. Finally, following intradermal inoculation, ORFV-associated lesions developed homogeneously in all infected animals, with lesions progressing from the point of inoculation in different areas of the skin of the lips, yet also spreading to the interior of the mouth, gums, palate and tongue, as occurs in natural infections. Thus, it was concluded that for studies investigating the efficacy of new approaches to treatment and vaccination for improved welfare of affected animals and control of ORFV transmission, the most appropriate route for experimental ORFV infection is intradermal inoculation.This research was supported by funding from the Australian company Animal Ethics Pty Ltd. The work was also supported by the Aragón Government and the European Social Fund (A15_17R, Construyendo Aragón 2016–20) and Project CONECTIM funded by Gobierno de Navarra (PC052–053).Peer reviewe

    HTLV-1 infection in solid organ transplant donors and recipients in Spain

    Get PDF
    HTLV-1 infection is a neglected disease, despite infecting 10-15 million people worldwide and severe illnesses develop in 10% of carriers lifelong. Acknowledging a greater risk for developing HTLV-1 associated illnesses due to immunosuppression, screening is being widely considered in the transplantation setting. Herein, we report the experience with universal HTLV testing of donors and recipients of solid organ transplants in a survey conducted in Spain. All hospitals belonging to the Spanish HTLV network were invited to participate in the study. Briefly, HTLV antibody screening was performed retrospectively in all specimens collected from solid organ donors and recipients attended since the year 2008. A total of 5751 individuals were tested for HTLV antibodies at 8 sites. Donors represented 2312 (42.2%), of whom 17 (0.3%) were living kidney donors. The remaining 3439 (59.8%) were recipients. Spaniards represented nearly 80%. Overall, 9 individuals (0.16%) were initially reactive for HTLV antibodies. Six were donors and 3 were recipients. Using confirmatory tests, HTLV-1 could be confirmed in only two donors, one Spaniard and another from Colombia. Both kidneys of the Spaniard were inadvertently transplanted. Subacute myelopathy developed within 1 year in one recipient. The second recipient seroconverted for HTLV-1 but the kidney had to be removed soon due to rejection. Immunosuppression was stopped and 3 years later the patient remains in dialysis but otherwise asymptomatic. The rate of HTLV-1 is low but not negligible in donors/recipients of solid organ transplants in Spain. Universal HTLV screening should be recommended in all donor and recipients of solid organ transplantation in Spain. Evidence is overwhelming for very high virus transmission and increased risk along with the rapid development of subacute myelopathy

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio
    corecore