22 research outputs found

    Desarrollo de metodologías de flipped classroom para asignaturas de ciencias básicas

    No full text
    Uno de los retos más importantes de la enseñanza de ciencias básicas es la aplicación de métodos docentes innovadores cumpliendo los objetivos curriculares, en los que prima la adquisición de conocimientos sólidos. La Flipped Classroom es un método innovador que permite flexibilizar las clases transformando al alumno en un participante proactivo con capacidad autoevaluadora. En nuestro proyecto de Flipped Classroom para primeros cursos de Medicina hemos diseñado una actividad en la que proponemos al alumno un trabajo autónomo con dos objetivos: el aprendizaje de conceptos integrados en el currículum de la asignatura y el diseño por parte del propio alumno de herramientas que puede utilizar para estudiar individualmente, y que le facilitan el desarrollo de competencias. Las herramientas sobre las que se trabajó fueron el diseño de “Worksheets” y “Flash Cards”, que se han usado como apoyo en las tareas del alumno. Este método de Flipped Classroom es innovador en su diseño sencillo, puesto que los docentes de ciencias básicas no necesitan usar recursos multimedia sofisticados para utilizarla, aunque es lo suficientemente interactivo para que el alumno lo encuentre atractivo. Al mismo tiempo, el diseño de la actividad admite múltiples variantes que ofrece grandes posibilidades para su aplicación en el aula.SIN FINANCIACIÓNNo data 2014UE

    Desarrollo de metodologías de “flipped classroom” para asignaturas de Ciencias Básicas: valoración de los alumnos

    No full text
    El departamento de Ciencias Biomédicas Básicas de la Universidad Europea de Madrid UEM se ha volcado en el uso de nuevas tecnologías de enseñanza aplicadas a las Ciencias Biomédicas. Algunas de estas metodologías se han aplicado con éxito durante los últimos cursos en el grado de Medicina, y en particular en la asignatura “Metodología, Estructura y Función (MEF)”, que integra las asignaturas de Anatomía, Histología y Fisiología del 2º curso del grado en medicina. La “flipped classroom” o clase invertida es un nuevo método didáctico que recurre a vídeos y otras fuentes fuera de la clase tradicional para que los mismos alumnos las usen desarrollando un aprendizaje autónomo de la materia. En este estudio, nuestro objetivo ha sido analizar la percepción real que tienen los propios alumnos de la clase invertida. Por ese motivo hemos pedido que un grupo de alumnos valore una clase invertida adaptada al currículo de la asignatura MEF. A través de un cuestionario, los alumnos han podido valorar la clase invertida frente al método tradicional y el uso de las nuevas tecnologías como recurso didáctico.SIN FINANCIACIÓNNo data 2015UE

    The challenge of improving the understanding of biochemistry: A new methodology integrating basic subjects in clinical scenarios

    No full text
    Biochemistry, Genetics, Cellular and Molecular Biology are subjects perceived as diffi cult by students due to their abstraction level. They become clearer when they are studied in an integrated context. In the Department of Basic Biomedical Sciences at the Universidad Europea de Madrid we are tackling this reality through our newly designed methodology named Workstation Learning Activities (WSLA, González-Soltero et al., submitted). Based on the TBL approach, WSLA benefi ts from using clinical scenarios as a thread to instruct students with an integrated perspective. This method improves the understanding of the basic biochemical processes behind physiological events whilst relating them to the fundamentals of anatomy. Workstations are designed to cover the specifi c learning objectives. Set with state of the art environments and using cutting edge technology, students are faced with practical and theoretical settings as they will fi nd them in the real professional world. Hence implementation of WSLA is especially welcomed when implemented in laboratory practices. Students understand the relevance of integration of otherwise separated subjects as a fundamental background to comprehend basic biological processes developing critical thinking. WSLA represents a flexible instrument that can be scalable to diff erent degrees and levels of integration across academic years. Given the internationality of our institution, WSLA proves to be a helpful resource to be used in multicultural sessions. When analyzing student’s perceptions, motivation and academic results we have found that WSLA improves both, showing the benefi ts of implementing this new methodology in the Health Sciences Degrees Curricula.Sin financiaciónNo data (2017)UE

    Competencias Data-Driven de gestión del dato de investigación según estándares FAIR en el ámbito de la educación biomédica y de ciencias de la salud

    No full text
    El término FAIR1 establece principios a cumplir por los datos de investigación: Encontrables, Accesibles, Interoperables y Reutilizables (del inglés: Findable, Accessible, Interoperable, and Reusable). En el ámbito educativo de las ciencias biomédicas y de la salud, el manejo de datos FAIR es importante para: (1) la investigación preclínica, clínica y traslacional, (2) mejorar protocolos y algoritmos de decisión clínica basados en la evidencia, (3) la medicina de precisión y, (4) el impulso a la innovación, al crear repositorios de datos reutilizables (ciencia abierta)2.UEM (2022/35)UE

    The challenge of improving the understanding of basic science subjects: A new methodology integrating basic subjects in clinical scenarios

    No full text
    Understanding of the basic biochemical processes behind physiological events whilst relating them to the fundamentals of anatomy is paramount for Health Science students. We are developing an integrated cases module for pre-clinical years of all Health Sciences Degrees meeting the learning objectives established for each pre-clinical year. We have also implemented a new methodology approach based on the TBL methodology: workstation learning activity (WSLA), using clinical scenarios as a thread. In a pilot experience with first year students at the Medical Bachelor’s Degree, implementation of the module and the new design of integrated activities was evaluated through a survey. 78% percent of the participants state that the WSLA sessions are more useful than the tradiwww. fundacioneducacionmedica.org FEM 2017; 20 (Supl 2): S1-S75 S21 SESIÓN A tional master class, whilst 82% percent confirm that the WSLA methodology effectively integrates concepts covered by different subjects currently separated in the present curriculum. WSLA is feasible and admits being performed with large groups of students and minimum number of instructors.Sin financiaciónNo data (2017)UE

    The WSLA, a model to learn Physiology in an integrated manner

    No full text
    The need to integrate knowledge and skills in higher education has become an essential demand, especially in the biomedical sciences. Establishing integrated programs in medical education is, however, a challenge. Recently, at the European University of Madrid we have opted to tackle a progressive integration, without needing to get to the curricular level, through a new model called WSLA (Work Stations Learning Activities). The WSLA serves to create integrated learning modules that can be applied and adapted to different situations, from master classes to laboratory practices. This new approach was conceived at two different levels: first, we identified potentially integrative units from different fields according to national learning goals established for each preclinical year (national quality agency regulations). Secondly, we implemented a new instrument that combines active methodologies in Work Station Learning Activities (WSLA), using clinical scenarios as a guiding common thread to instruct students from an integrated perspective. We evaluated students’ perception through a Likert-type survey of a total of 118 students enrolled in the first year of the Bachelor’s Degree in Medicine. Students’ perception of WSLA was positive in overall terms. Seventy nine percent of participants stated that WSLA sessions were more useful than nonintegrated activities. Eighty three percent confirmed that the WSLA methodology was effective at integrating concepts covered by different subjects. The WSLA approach is a flexible and scalable instrument for moving towards integrated curricula, and it can be successfully adapted to teach Physiology in preclinical years of Health Science degrees. WSLA can be applied to large groups of students in a variety of contexts or environments using clinical cases as connecting threads.2018/UEM 202.523 JCR (2018) Q2, 38/81 Physiology; Q3, 172/299 Biochemistry & Molecular Biology0.872 SJR (2018) Q2, 189/462 BiochemistryNo data IDR 2018UE

    Work station learning activities: A flexible and scalable instrument for integrating across basic subjects in biomedical education

    No full text
    Background: Establishing innovative teaching programs in biomedical education involves dealing with several national and supra-national (i.e. European) regulations as well as with new pedagogical and demographic demands. We aimed to develop and validate a suitable instrument to integrate activities across preclinical years in all Health Science Degrees while meeting requirements of national quality agencies. Methods: The new approach was conceived at two different levels: first, we identified potentially integrative units from different fields according to national learning goals established for each preclinical year (national quality agency regulations). Secondly, we implemented a new instrument that combines active methodologies in Work Station Learning Activities (WSLA), using clinical scenarios as a guiding common thread to instruct students from an integrated perspective. We evaluated students’ perception through a Likert-type survey of a total of 118 students enrolled in the first year of the Bachelor’s Degree in Medicine. Results: Our model of integrated activities through WSLA is feasible, scalable and manageable with large groups of students and a minimum number of instructors, two major limitations in many medical schools. Students’ perception of WSLA was positive in overall terms. Seventy nine percent of participants stated that WSLA sessions were more useful than non-integrated activities. Eighty three percent confirmed that the WSLA methodology was effective at integrating concepts covered by different subjects. Conclusions: The WSLA approach is a flexible and scalable instrument for moving towards integrated curricula, and it can be successfully adapted to teach basic subjects in preclinical years of Health Science degrees. WSLA can be applied to large groups of students in a variety of contexts or environments using clinical cases as connecting threads.Sin financiación1.511 JCR (2017) Q2, 101/239 Education & Educational Research; Q3, 21/41 Education, Scientific DisciplinesUE

    Dynamic Expression of Membrane Type 1-Matrix Metalloproteinase (Mt1-mmp/Mmp14) in the Mouse Embryo

    No full text
    MT1-MMP/MMP14 belongs to a subgroup of the matrix metalloproteinases family that presents a transmembrane domain, with a cytosolic tail and the catalytic site exposed to the extracellular space. Deficient mice for this enzyme result in early postnatal death and display severe defects in skeletal, muscle and lung development. By using a transgenic line expressing the LacZ reporter under the control of the endogenous Mt1-mmp promoter, we reported a dynamic spatiotemporal expression pattern for Mt1-mmp from early embryonic to perinatal stages during ardiovascular development and brain formation. Thus, Mt1-mmp shows expression in the endocardium of the heart and the truncus arteriosus by E8.5, and is also strongly detected during vascular system development as well as in endothelial cells. In the brain, LacZ reporter expression was detected in the olfactory bulb, the rostral cerebral cortex and the caudal mesencephalic tectum. LacZ-positive cells were observed in neural progenitors of the spinal cord, neural crest cells and the intersomitic region. In the limb, Mt1-mmp expression was restricted to blood vessels, cartilage primordium and muscles. Detection of the enzyme was confirmed byWestern blot and mmunohistochemical analysis. We suggest novel functions for this metalloproteinase in angiogenesis, endocardial formation and vascularization during organogenesis. Moreover, Mt1-mmp expression revealed that the enzyme may contribute to heart, muscle and brain throughout development.UEM (2018UEM13, 2019UEM10) to C.S.-C. and funding from MICINN grants SAF2017-83229-R and PID2020-112981RB-I00 to A.G.6.600 JCR (2020) Q2, 53/195 Cell Biology1.220 SJR (2020) Q1, 398/2448 Medicine (miscellaneous)No data IDR 2019UE
    corecore