188 research outputs found

    Microstructure, Elastic and Inelastic Properties of Partially Graphitized Biomorphic Carbons

    Get PDF
    The microstructural characteristics and amplitude dependences of the Young’s modulus E and internal friction (logarithmic decrement δ) of biocarbon matrices prepared by beech wood carbonization at temperatures Tcarb = 850–1600°C in the presence of a nickelcontaining catalyst have been studied. Using Xray diffraction and electron microscopy, it has been shown that the use of a nickel catalyst during carbon ization results in a partial graphitization of biocarbons at Tcarb ≥ 1000°C: the graphite phase is formed as 50 to 100nm globules at Tcarb = 1000°C and as 0.5 to 3.0μm globules at Tcarb = 1600°C. It has been found that the measured dependences E(Tcarb) and δ(Tcarb) contain three characteristic ranges of variations in the Young’s modulus and logarithmic decrement with a change in the carbonization temperature: E increases and δ decreases in the ranges Tcarb 1300°C; in the range 1000 < Tcarb < 1300°C, E sharply decreases and δ increases. The observed behavior of E(Tcarb) and δ(Tcarb) for biocarbons carbonized in the presence of nickel correlates with the evolution of their microstructure. The largest values of E are obtained for samples with Tcarb = 1000 and 1600°C. However, the samples with Tcarb = 1600°C exhibit a higher suscep tibility to microplasticity due to the presence of a globular graphite phase that is significantly larger in size and total volume.Peer reviewe

    NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations

    Get PDF
    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D C-13 double-quantum/single-quantum correlation SSNMR spectrum of C-13-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). C-13 chemical shift anisotropy (CSA) patterns measured by a 2D C-13 CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems

    A Genome-Wide Association Study Identifies Variants Underlying the Arabidopsis thaliana Shade Avoidance Response

    Get PDF
    Shade avoidance is an ecologically and molecularly well-understood set of plant developmental responses that occur when the ratio of red to far-red light (R∶FR) is reduced as a result of foliar shade. Here, a genome-wide association study (GWAS) in Arabidopsis thaliana was used to identify variants underlying one of these responses: increased hypocotyl elongation. Four hypocotyl phenotypes were included in the study, including height in high R∶FR conditions (simulated sun), height in low R∶FR conditions (simulated shade), and two different indices of the response of height to low R∶FR. GWAS results showed that variation in these traits is controlled by many loci of small to moderate effect. A known PHYC variant contributing to hypocotyl height variation was identified and lists of significantly associated genes were enriched in a priori candidates, suggesting that this GWAS was capable of generating meaningful results. Using metadata such as expression data, GO terms, and other annotation, we were also able to identify variants in candidate de novo genes. Patterns of significance among our four phenotypes allowed us to categorize associations into three groups: those that affected hypocotyl height without influencing shade avoidance, those that affected shade avoidance in a height-dependent fashion, and those that exerted specific control over shade avoidance. This grouping allowed for the development of explicit hypotheses about the genetics underlying shade avoidance variation. Additionally, the response to shade did not exhibit any marked geographic distribution, suggesting that variation in low R∶FR–induced hypocotyl elongation may represent a response to local conditions

    Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Get PDF
    BACKGROUND: Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. METHODS: We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. RESULTS: We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to expression of the known HGF receptor Met, as neither LNCaP nor clonally-derived C4-2 sub-line contain any detectable Met protein. Even in the absence of Met, small GTPases are activated, linking HGF stimulation to membrane protrusion and integrin activation. Membrane-localized nucelolin levels increase during cancer progression, as modeled by both the PC3 and LNCaP prostate cancer progression cell lines. CONCLUSION: We propose that cell surface localized nucleolin protein may function in these cells as a novel HGF receptor. Membrane localized nucleolin binds heparin-bound growth factors (including HGF) and appears upregulated during prostate cancer progression. Antibodies against nucleolin are able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. HGF-nucleolin interactions could be partially responsible for the complexity of HGF responses and met expression reported in the literature

    Universal health coverage from multiple perspectives: a synthesis of conceptual literature and global debates

    Get PDF
    Background: There is an emerging global consensus on the importance of universal health coverage (UHC), but no unanimity on the conceptual definition and scope of UHC, whether UHC is achievable or not, how to move towards it, common indicators for measuring its progress, and its long-term sustainability. This has resulted in various interpretations of the concept, emanating from different disciplinary perspectives. This paper discusses the various dimensions of UHC emerging from these interpretations and argues for the need to pay attention to the complex interactions across the various components of a health system in the pursuit of UHC as a legal human rights issue. Discussion: The literature presents UHC as a multi-dimensional concept, operationalized in terms of universal population coverage, universal financial protection, and universal access to quality health care, anchored on the basis of health care as an international legal obligation grounded in international human rights laws. As a legal concept, UHC implies the existence of a legal framework that mandates national governments to provide health care to all residents while compelling the international community to support poor nations in implementing this right. As a humanitarian social concept, UHC aims at achieving universal population coverage by enrolling all residents into health-related social security systems and securing equitable entitlements to the benefits from the health system for all. As a health economics concept, UHC guarantees financial protection by providing a shield against the catastrophic and impoverishing consequences of out-of-pocket expenditure, through the implementation of pooled prepaid financing systems. As a public health concept, UHC has attracted several controversies regarding which services should be covered: comprehensive services vs. minimum basic package, and priority disease-specific interventions vs. primary health care. Summary: As a multi-dimensional concept, grounded in international human rights laws, the move towards UHC in LMICs requires all states to effectively recognize the right to health in their national constitutions. It also requires a human rights-focused integrated approach to health service delivery that recognizes the health system as a complex phenomenon with interlinked functional units whose effective interaction are essential to reach the equilibrium called UHC

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore