41 research outputs found
Double Fe-impurity charge state in the topological insulator BiSe
The influence of individual impurities of Fe on the electronic properties of
topological insulator BiSe is studied by Scanning Tunneling Microscopy.
The microscope tip is used in order to remotely charge/discharge Fe impurities.
The charging process is shown to depend on the impurity location in the
crystallographic unit cell, on the presence of other Fe impurities in the close
vicinity, as well as on the overall doping level of the crystal. We present a
qualitative explanation of the observed phenomena in terms of tip-induced local
band bending. Our observations evidence that the specific impurity neighborhood
and the position of the Fermi energy with respect to the Dirac point and bulk
bands have both to be taken into account when considering the electron
scattering on the disorder in topological insulators.Comment: 10 pages, accepted for publication in Applied Physics Letters, minor
bugs were correcte
Magnetization dynamics in dilute Pd<inf>1-</inf><inf>x</inf>Fe<inf>x</inf> thin films and patterned microstructures considered for superconducting electronics
© 2016 Author(s).Motivated by recent burst of applications of ferromagnetic layers in superconducting digital and quantum elements, we study the magnetism of thin films and patterned microstructures of Pd0.99Fe0.01. In this diluted ferromagnetic system, a high-sensitivity ferromagnetic resonance (FMR) experiment reveals spectroscopic signatures of re-magnetization and enables the estimation of the saturation magnetization, the anisotropy field, and the Gilbert damping constant. The detailed analysis of FMR spectra links the observed unexpectedly high reduced anisotropy field (0.06-0.14) with the internal anisotropy, points towards a cluster nature of the ferromagnetism, and allows estimating characteristic time scale for magnetization dynamics in Pd-Fe based cryogenic memory elements to (3 - 5) × 10 - 9 s
Frames of reference in spaces with affine connections and metrics
A generalized definition of a frame of reference in spaces with affine
connections and metrics is proposed based on the set of the following
differential-geometric objects:
(a) a non-null (non-isotropic) vector field,
(b) the orthogonal to the vector field sub space,
(c) an affine connection and the related to it covariant differential
operator determining a transport along the given non-null vector filed.
On the grounds of this definition other definitions related to the notions of
accelerated, inertial, proper accelerated and proper inertial frames of
reference are introduced and applied to some mathematical models for the
space-time. The auto-parallel equation is obtained as an Euler-Lagrange's
equation. Einstein's theory of gravitation appears as a theory for
determination of a special frame of reference (with the gravitational force as
inertial force) by means of the metrics and the characteristics of a material
distribution.
PACS numbers: 0490, 0450, 1210G, 0240VComment: 17 pages, LaTeX 2
Microwave analysis of the interplay between magnetism and superconductivity in EuFe2(As1−xPx)2 single crystals
We report on the microwave analysis of the interplay between magnetism and superconductivity in single crystals of EuFe_{2}(As_{1−x}P_{x})_{2}, accomplished by means of a coplanar waveguide resonator technique. The bulk complex magnetic susceptibility χ_{m} extracted through a cavity perturbation approach is demonstrated to be highly sensitive to the magnetic structure and dynamics, revealing two distinct magnetic transitions below the superconducting critical temperature. By a comparison with magnetic force microscopy maps, we ascribe the χ_{m}^{′′} peak observed at about 17 K to the transition from the ferromagnetic domain Meissner phase to the domain vortex-antivortex state, with the subsequent evolution of the domain structure at lower temperatures. The second χ_{m}^{′′} peak observed at 11 K reflects a specific high-frequency feature, connected to vortex-antivortex dynamics and eventual spin reorientation transition of the Eu^{2+} canted ferromagnetic subsystem. The two peaks merge and vanish upon application of an in-plane magnetic field, which is compatible with the presence of a quantum critical point below 1 T
Ex situ elaborated proximity mesoscopic structures for ultrahigh vacuum scanning tunneling spectroscopy
We apply ultrahigh vacuum Scanning Tunneling Spectroscopy (STS) at ultra-low temperature to study proximity phenomena in metallic Cu in contact with superconducting Nb. In order to solve the problem of Cu-surface contamination, Cu(50nm)/Nb(100nm) structures are grown by respecting the inverted order of layers on SiO2/Si substrate. Once transferred into vacuum, the samples are cleaved at the structure-substrate interface. As a result, a contamination-free Cu-surface is exposed in vacuum. It enables high-resolution STS of superconducting correlations induced by proximity from the underlying superconducting Nb layer. By applying magnetic field, we generate unusual proximity-induced superconducting vortices and map them with a high spatial and energy resolution. The suggested method opens a way to access local electronic properties of complex electronic mesoscopic devices by performing ex situ STS under ultrahigh vacuum. © 2014 AIP Publishing LLC
Expansion of a superconducting vortex core into a diffusive metal
© 2018 The Author(s). Vortices in quantum condensates exist owing to a macroscopic phase coherence. Here we show, both experimentally and theoretically, that a quantum vortex with a well-defined core can exist in a rather thick normal metal, proximized with a superconductor. Using scanning tunneling spectroscopy we reveal a proximity vortex lattice at the surface of 50 nm - thick Cu-layer deposited on Nb. We demonstrate that these vortices have regular round cores in the centers of which the proximity minigap vanishes. The cores are found to be significantly larger than the Abrikosov vortex cores in Nb, which is related to the effective coherence length in the proximity region. We develop a theoretical approach that provides a fully self-consistent picture of the evolution of the vortex with the distance from Cu/Nb interface, the interface impedance, applied magnetic field, and temperature. Our work opens a way for the accurate tuning of the superconducting properties of quantum hybrids
Revealing Josephson vortex dynamics in proximity junctions below critical current
Made of a thin non-superconducting metal (N) sandwiched by two
superconductors (S), SNS Josephson junctions enable novel quantum
functionalities by mixing up the intrinsic electronic properties of N with the
superconducting correlations induced from S by proximity. Electronic properties
of these devices are governed by Andreev quasiparticles [1] which are absent in
conventional SIS junctions whose insulating barrier (I) between the two S
electrodes owns no electronic states. Here we focus on the Josephson vortex
(JV) motion inside Nb-Cu-Nb proximity junctions subject to electric currents
and magnetic fields. The results of local (Magnetic Force Microscopy) and
global (transport) experiments provided simultaneously are compared with our
numerical model, revealing the existence of several distinct dynamic regimes of
the JV motion. One of them, identified as a fast hysteretic entry/escape below
the critical value of Josephson current, is analyzed and suggested for
low-dissipative logic and memory elements.Comment: 11 pages, 3 figures, 1 table, 43 reference
Unique interplay between superconducting and ferromagnetic orders in EuRbFe4As4
© 2018 American Physical Society. Transport, magnetic, and optical investigations on EuRbFe4As4 single crystals evidence that the ferromagnetic ordering of the Eu2+ magnetic moments at Tm=15 K, below the superconducting transition (Tc=36 K), affects superconductivity in a weak but intriguing way. Upon cooling below Tm, the zero resistance state is preserved and the diamagnetic response is only slightly affected by the emerging ferromagnetism; a perfect diamagnetism is recovered at low temperatures. The infrared conductivity is strongly suppressed in the far-infrared region below Tc, associated with the opening of a complete superconducting gap at 2Δ=10 meV. A gap smaller than the weak-coupling limit suggests strong orbital effects or, within a multiband superconductivity scenario, the existence of a larger yet unrevealed gap