1,345 research outputs found
Strongly anisotropic Dirac quasiparticles in irradiated graphene
We study quasiparticle dynamics in graphene exposed to a linearly-polarized
electromagnetic wave of very large intensity. Low-energy transport in such
system can be described by an effective time-independent Hamiltonian,
characterized by multiple Dirac points in the first Brillouin zone. Around each
Dirac point the spectrum is anisotropic: the velocity along the polarization of
the radiation significantly exceeds the velocity in the perpendicular
direction. Moreover, in some of the points the transverse velocity oscillates
as a function of the radiation intensity. We find that the conductance of a
graphene p-n junction in the regime of strong irradiation depends on the
polarization as , where is the
angle between the polarization and the p-n interface, and oscillates as a
function of the radiation intensity.Comment: 5 pages + 2 pages of Supplemental Material, 4 figure
Observation of hard radiations in a laboratory atmospheric high-voltage discharge
The new results concerning neutron emission detection from a laboratory
high-voltage discharge in the air are presented. Data were obtained with a
combination of plastic scintillation detectors and He filled counters of
thermal neutrons. Strong dependence of the hard x-ray and neutron radiation
appearance on the field strength near electrodes, which is determined by their
form, was found. We have revealed a more sophisticated temporal structure of
the neutron bursts observed during of electric discharge. This may indicate
different mechanisms for generating penetrating radiation at the time formation
and development of the atmospheric discharge.Comment: 10 pages, 10 figures, 2 table
Automated system for diagnosing craniocerebral injury
A Russian national computing and communication system designed to assist non-specialized physicians in the diagnosis and treatment of craniocerebral injury is described
Multifragmentation and nuclear phase transitions (liquid-fog and liquid-gas)
Thermal multifragmentation of hot nuclei is interpreted as the nuclear
liquid-fog phase transition. The charge distributions of the intermediate mass
fragments produced in p(3.6 GeV) + Au and p(8.1 GeV) + Au collisions are
analyzed within the statistical multifragmentation model with the critical
temperature for the nuclear liquid-gas phase transition Tc as a free parameter.
The analysis presented here provides strong support for a value of Tc > 15 MeV.Comment: 4 pages, 2 figures, Submittet to Proc. of NN2003 to be published in
Nucl. Phys.
Out-of-Equilibrium Admittance of Single Electron Box Under Strong Coulomb Blockade
We study admittance and energy dissipation in an out-of-equlibrium single
electron box. The system consists of a small metallic island coupled to a
massive reservoir via single tunneling junction. The potential of electrons in
the island is controlled by an additional gate electrode. The energy
dissipation is caused by an AC gate voltage. The case of a strong Coulomb
blockade is considered. We focus on the regime when electron coherence can be
neglected but quantum fluctuations of charge are strong due to Coulomb
interaction. We obtain the admittance under the specified conditions. It turns
out that the energy dissipation rate can be expressed via charge relaxation
resistance and renormalized gate capacitance even out of equilibrium. We
suggest the admittance as a tool for a measurement of the bosonic distribution
corresponding collective excitations in the system
Blue laser cooling transitions in Tm I
We have studied possible candidates for laser cooling transitions in
Tm in the spectral region 410 -- 420 nm. By means of saturation
absorption spectroscopy we have measured the hyperfine structure and rates of
two nearly closed cycling transitions from the ground state
to upper states
at
410.6 nm and
at
420.4 nm and evaluated the life times of the excited levels as 15.9(8) ns and
48(6) ns respectively. Decay rates from these levels to neighboring
opposite-parity levels are evaluated by means of Hartree-Fock calculations. We
conclude, that the strong transition at 410.6 nm has an optical leak rate of
less then and can be used for efficient laser cooling of
Tm from a thermal atomic beam. The hyperfine structure of two other
even-parity levels which can be excited from the ground state at 409.5 nm and
418.9 nm is also measured by the same technique. In addition we give a
calculated value of s for the rate of magnetic-dipole transition
at 1.14 m between the fine structure levels
of the ground state which can be
considered as a candidate for applications in atomic clocks.Comment: 8 pages, 5 figure
Prediction of the Caspian Sea level using ECMWF seasonal forecasts and reanalysis
This article is made available through the Brunel Open Access Publishing Fund. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.The hydrological budget of the Caspian Sea (CS) is investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERAi) and seasonal forecast (FCST) data with the aim of predicting the Caspian Sea Level (CSL) some months ahead. Precipitation and evaporation are used. After precipitation events over the Volga River, the discharge (Volga River discharge (VRD)) follows with delays, which are parameterized. The components of the water budget from ERAi and FCSTs are integrated to obtain time series of the CSL. Observations of the CSL and the VRD are used for comparison and tuning. The quality of ERAi data is sufficiently good to calculate the time variability of the CSL with a satisfactory accuracy. Already the storage of water within the Volga Basin allows forecasts of the CSL a few months ahead, and using the FCSTs of precipitation improves the CSL forecasts. The evaporation in the seasonal forecasts is deficient due to unrealistic sea surface temperatures over the CS. Impacts of different water budget terms on the CSL variability are shown by a variety of validation tools. The importance of precipitation anomalies over the catchment of the Volga River is confirmed, but also impacts from the two southern rivers (Sefidrud and Kura River) and the evaporation over the CS become obvious for some periods. When pushing the FCSTs beyond the limits of the seasonal FCSTs to 1 year, considerable forecast skill can still be found. Validating only FCSTs by the present approach, which show the same trend as one based on a statistical method, significantly enhances the skill scores
- …
