10 research outputs found

    Generating and sustaining long-lived spin states in 15N,15Nâ€Č-azobenzene

    Get PDF
    Long-Lived spin States (LLSs) hold a great promise for sustaining non-thermal spin order and investigating various slow processes by Nuclear Magnetic Resonance (NMR) spectroscopy. Of special interest for such application are molecules containing nearly equivalent magnetic nuclei, which possess LLSs even at high magnetic fields. In this work, we report an LLS in trans-15N,15Nâ€Č-azobenzene. The singlet state of the 15N spin pair exhibits a long-lived character. We solve the challenging problem of generating and detecting this LLS and further increase the LLS population by converting the much higher magnetization of protons into the 15N singlet spin order. As far as the longevity of this spin order is concerned, various schemes have been tested for sustaining the LLS. Lifetimes of 17 minutes have been achieved at 16.4 T, a value about 250 times longer than the longitudinal relaxation time of 15N in this magnetic field. We believe that such extended relaxation times, along with the photochromic properties of azobenzene, which changes conformation upon light irradiation and can be hyperpolarized by using parahydrogen, are promising for designing new experiments with photo-switchable long-lived hyperpolarization

    Algorithmic cooling of nuclear spins using long-lived singlet order

    No full text
    Algorithmic cooling methods manipulate an open quantum system in order to lower its temperature below that of the environment. We achieve significant cooling of an ensemble of nuclear spin-pair systems by exploiting the long-lived nuclear singlet state, which is an antisymmetric quantum superposition of the "up" and "down" Zeeman states. The effect is demonstrated by nuclear magnetic resonance (NMR) experiments on a molecular system containing a coupled pair of near-equivalent 13C nuclei. The populations of the system are subjected to a repeating sequence of cyclic permutations separated by relaxation intervals. The long-lived nuclear singlet order is pumped well beyond the unitary limit. The pumped singlet order is converted into nuclear magnetization which is enhanced by 21% relative to its thermal equilibrium value

    Fast destruction of singlet order in NMR experiments

    No full text
    Some nuclear spin systems support long-lived states, which display greatly extended relaxation times relative to the relaxation time of nuclear spin magnetization. In spin-1/2 pairs, such a long-lived state is given by singlet order, representing the difference of the population of the nuclear singlet state and the mean population of the three triplets. In many cases, the experiments with long-lived singlet order are very time-consuming because of the need to wait for singlet order decay before the experiment can be repeated; otherwise, spin order remaining from a previous measurement may lead to experimental artifacts. Here, we propose techniques for fast and efficient singlet order destruction. These methods exploit coherent singlet-triplet conversion; in some cases, multiple conversion steps are introduced. We demonstrate that singlet order destruction enables a dramatic reduction of the waiting time between consecutive experiments and suggest to use this approach in singlet-state Nuclear Magnetic Resonance (NMR) experiments with nearly equivalent spins.<br/

    Constant‐adiabaticity radiofrequency pulses for generating long‐lived singlet spin states in NMR

    No full text
    A method is implemented to perform “fast” adiabatic variation of the spin Hamiltonian by imposing the constant adiabaticity condition. The method is applied to improve the performance of singlet‐state Nuclear Magnetic Resonance (NMR) experiments, specifically, for efficient generation and readout of the singlet spin order in coupled spin pairs by applying adiabatically ramped RF‐fields. Test experiments have been performed on a specially designed molecule having two strongly coupled 13C spins and on selectively isotopically labelled glycerol having two pairs of coupled protons. Optimized RF‐ramps show improved performance in comparison, for example, to linear ramps. We expect that the methods described here are useful, not only for singlet‐state NMR experiments, but also for other experiments in magnetic resonance, which utilize adiabatic variation of the spin Hamiltonian

    Transport of hyperpolarized samples in dissolution-DNP experiments

    No full text
    Dissolution dynamic nuclear polarization (D-DNP) experiments rely on the transfer of a sample between two high-field magnets. During this transfer, samples might experience passage through regions where the stray fields of the magnets are very weak, can approach zero, and even change their sign. This can lead to unexpected spectral features in spin systems that undergo transitions from weak- to strong-coupling regimes and vice versa, much like in field cycling nuclear magnetic resonance experiments. We herein demonstrate that the spectral features observed in D-DNP experiments can be rationalized, provided the time-dependence of the spin Hamiltonian upon field cycling is sufficiently adiabatic. Under such conditions, a passage through a weak static field can lead to the emergence of a long-lived state (LLS) based on an imbalance between the populations of singlet and triplet states in pairs of nuclei that are strongly coupled during the passage through low field. The LLS entails the appearance of anti-phase multiplet components upon transfer to a high-field magnet for observation of NMR signals
    corecore