93 research outputs found
Strain-specificity in the hydrogen sulphide signalling network following dietary restriction in recombinant inbred mice
Modulation of the ageing process by dietary restriction (DR) across multiple taxa is well established. While the exact mechanism through which DR acts remains elusive, the gasotransmitter hydrogen sulphide (H2S) may play an important role. We employed a comparative-type approach using females from three ILSXISS recombinant inbred mouse strains previously reported to show differential lifespan responses following 40% DR. Following long-term (10 months) 40% DR, strain TejJ89âreported to show lifespan extension under DRâexhibited elevated hepatic H2S production relative to its strain-specific ad libitum (AL) control. Strain TejJ48 (no reported lifespan effect following 40% DR) exhibited significantly reduced hepatic H2S production, while H2S production was unaffected by DR in strain TejJ114 (shortened lifespan reported following 40% DR). These differences in H2S production were reflected in highly divergent gene and protein expression profiles of the major H2S production and disposal enzymes across strains. Increased hepatic H2S production in TejJ89 mice was associated with elevation of the mitochondrial H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (MPST). Our findings further support the potential role of H2S in DR-induced longevity and indicate the presence of genotypic-specificity in the production and disposal of hepatic H2S in response to 40% DR in mice
Hepatic hydrogen sulfide levels are reduced in mouse model of Hutchinson-Gilford progeria syndrome
Hutchinson-Gilford progeria syndrome (HGPS) is a rare human disease characterised by accelerated biological ageing. Current treatments are limited, and most patients die before 15 years of age. Hydrogen sulfide (H2S) is an important gaseous signalling molecule that it central to multiple cellular homeostasis mechanisms. Dysregulation of tissue H2S levels is thought to contribute to an ageing phenotype in many tissues across animal models. Whether H2S is altered in HGPS is unknown. We investigated hepatic H2S production capacity and transcript, protein and enzymatic activity of proteins that regulate hepatic H2S production and disposal in a mouse model of HGPS (G609G mice, mutated Lmna gene equivalent to a causative mutation in HGPS patients). G609G mice were maintained on either regular chow (RC) or high fat diet (HFD), as HFD has been previously shown to significantly extend lifespan of G609G mice, and compared to wild type (WT) mice maintained on RC. RC fed G609G mice had significantly reduced hepatic H2S production capacity relative to WT mice, with a compensatory elevation in mRNA transcripts associated with several H2S production enzymes, including cystathionine-Îł-lyase (CSE). H2S levels and CSE protein were partially rescued in HFD fed G609G mice. As current treatments for patients with HGPS have failed to confer significant improvements to symptoms or longevity, the need for novel therapeutic targets is acute and the regulation of H2S through dietary or pharmacological means may be a promising new avenue for research
Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis
ARM is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council (MRC) and the Motor Neurone Disease Association (MR/R001162/1). He also acknowledges support from the Rowling Scholars scheme, administered by the Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, and a seedcorn grant from The Chief Scientist Office and the RS Macdonald Charitable Trust via the Scottish Neurological Research Fund, administered by the University of St Andrews. JMG is funded by a starter grant for clinical lecturers from the Academy of Medical Sciences. CS is supported by a Medical Research Council grant (MR/L016400/1). NMM was funded by a Wellcome Trust New Investigator Award (100981/Z/13/Z). RNC and NMM are funded by a Diabetes UK grant (17/0005697). The Hardingham and Chandran laboratories are supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd, funded by the MRC, Alzheimer's Society and Alzheimer's Research UK. SC also acknowledges funding from the ARRNC, My Nameâ5 Doddie Foundation, and an MRC Dementias Platform UK Stem Cell Partnership grant (MR/N013255/1). BTS is a Rowling-DRI Fellow.Peer reviewedPublisher PD
COMPLEMENT FACTOR B IS A DETERMINANT OF BOTH METABOLIC AND CARDIOVASCULAR FEATURES OF METABOLIC SYNDROME
CFB (complement factor B) is elevated in adipose tissue and serum from patients with type 2 diabetes mellitus and cardiovascular disease, but the causal relationship to disease pathogenesis is unclear. Cfb is also elevated in adipose tissue and serum of the spontaneously hypertensive rat, a well-characterized model of metabolic syndrome. To establish the role of CFB in metabolic syndrome, we knocked out the Cfb gene in the spontaneously hypertensive rat. Cfbâ/â rats showed improved glucose tolerance and insulin sensitivity, redistribution of visceral to subcutaneous fat, increased adipocyte mitochondrial respiration, and marked changes in gene expression. Cfbâ/â rats also had lower blood pressure, increased ejection fraction and fractional shortening, and reduced left ventricular mass. These changes in metabolism and gene expression, in adipose tissue and left ventricle, suggest new adipose tissue-intrinsic and blood pressure-independent mechanisms for insulin resistance and cardiac hypertrophy in the spontaneously hypertensive rat. In silico analysis of the human CFB locus revealed 2 cis-regulated expression quantitative trait loci for CFB expression significantly associated with visceral fat, circulating triglycerides and hypertension in genome-wide association studies. Together, these data demonstrate a key role for CFB in the development of spontaneously hypertensive rat metabolic syndrome phenotypes and of related traits in humans and indicate the potential for CFB as a novel target for treatment of cardiometabolic disease
Human umbilical cord perivascular cells improve human pancreatic islet transplant function by increasing vascularization
Islet transplantation is an efficacious therapy for type 1 diabetes; however, islets from multiple donor pancreata are required, and a gradual attrition in transplant function is seen. Here, we manufactured human umbilical cord perivascular mesenchymal stromal cells (HUCPVCs) to Good Manufacturing Practice (GMP) standards. HUCPVCs showed a stable phenotype while undergoing rapid ex vivo expansion at passage 2 (p2) to passage 4 (p4) and produced proregenerative factors, strongly suppressing T cell responses in the resting state and in response to inflammation. Transplanting an islet equivalent (IEQ):HUCPVC ratio of 1:30 under the kidney capsule in diabetic NSG mice demonstrated the fastest return to normoglycemia by 3 days after transplant: Superior glycemic control was seen at both early (2.7 weeks) and later stages (7, 12, and 16 weeks) versus ratios of 1:0, 1:10, and 1:50, respectively. Syngeneic islet transplantation in immunocompetent mice using the clinically relevant hepatic portal route with a marginal islet mass showed that mice transplanted with an IEQ:HUCPVC ratio of 1:150 had superior glycemic control versus ratios of 1:0, 1:90, and 1:210 up to 6 weeks after transplant. Immunodeficient mice transplanted with human islets (IEQ:HUCPVC ratio of 1:150) exhibited better glycemic control for 7 weeks after transplant versus islet transplant alone, and islets transplanted via the hepatic portal vein in an allogeneic mouse model using a curative islet mass demonstrated delayed rejection of islets when cotransplanted with HUCPVCs (IEQ:HUCPVC ratio of 1:150). The immunosuppressive and proregenerative properties of HUCPVCs demonstrated long-term positive effects on graft function in vivo, indicating that they may improve long-term human islet allotransplantation outcomes
Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation
SummaryThe discovery of brown adipose tissue (BAT) in adult humans presents a new therapeutic target for metabolic disease; however, little is known about the regulation of human BAT. Chronic glucocorticoid excess causes obesity in humans, and glucocorticoids suppress BAT activation in rodents. We tested whether glucocorticoids regulate BAT activity in humans. In vivo, the glucocorticoid prednisolone acutely increased 18fluorodeoxyglucose uptake by BAT (measured using PET/CT) in lean healthy men during mild cold exposure (16°Câ17°C). In addition, prednisolone increased supraclavicular skin temperature (measured using infrared thermography) and energy expenditure during cold, but not warm, exposure in lean subjects. In vitro, glucocorticoids increased isoprenaline-stimulated respiration and UCP-1 in human primary brown adipocytes, but substantially decreased isoprenaline-stimulated respiration and UCP-1 in primary murine brown and beige adipocytes. The highly species-specific regulation of BAT function by glucocorticoids may have important implications for the translation of novel treatments to activate BAT to improve metabolic health
Increased anxiety in corticotropin-releasing factor type 2 receptor-null mice requires recent acute stress exposure and is associated with dysregulated serotonergic activity in limbic brain areas
BACKGROUND: Corticotropin-releasing factor type 2 receptors (CRFR2) are suggested to facilitate successful recovery from stress to maintain mental health. They are abundant in the midbrain raphe nuclei, where they regulate serotonergic neuronal activity and have been demonstrated to mediate behavioural consequences of stress. Here, we describe behavioural and serotonergic responses consistent with maladaptive recovery from stressful challenge in CRFR2-null mice. RESULTS: CRFR2-null mice showed similar anxiety levels to control mice before and immediately after acute restraint stress, and also after cessation of chronic stress. However, they showed increased anxiety by 24 hours after restraint, whether or not they had been chronically stressed. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents were quantified and the level of 5-HIAA in the caudal dorsal raphe nucleus (DRN) was increased under basal conditions in CRFR2-null mice, indicating increased 5-HT turnover. Twenty-four hours following restraint, 5-HIAA was decreased only in CRFR2-null mice, suggesting that they had not fully recovered from the challenge. In efferent limbic structures, CRFR2-null mice showed lower levels of basal 5-HT in the lateral septum and subiculum, and again showed a differential response to restraint stress from controls. Local cerebral glucose utilization (LCMRglu) revealed decreased neuronal activity in the DRN of CRFR2-null mice under basal conditions. Following 5-HT receptor agonist challenge, LCMRglu responses indicated that 5-HT(1A) receptor responses in the DRN were attenuated in CRFR2-null mice. However, postsynaptic 5-HT receptor responses in forebrain regions were intact. CONCLUSIONS: These results suggest that CRFR2 are required for proper functionality of 5-HT(1A) receptors in the raphe nuclei, and are key to successful recovery from stress. This disrupted serotonergic function in CRFR2-null mice likely contributes to their stress-sensitive phenotype. The 5-HT content in lateral septum and subiculum was notably altered. These areas are important for anxiety, and are also implicated in reward and the pathophysiology of addiction. The role of CRFR2 in stress-related psychopathologies deserves further consideration
âI found out the hard wayâ: Micro-political workings in professional football
This paper examines the micro-political experiences of Adam (a pseudonym), a newly appointed fitness coach at a Football Association Premier League Club, in his search for acceptance by senior colleagues. Data were collected through a series of in-depth, semi-structured interviews, before being subject to a process of inductive analysis. Goffmanâs (1959, 1963) writings on impression management and stigma, Ballâs (1987) micro-political perspective, and Garfinkelâs (1967) notion of status degradation are primarily utilised to make sense of Adamâs perceptions and actions. The findings point to the value of developing coachesâ micro-political understandings, and of including their formal facilitation within given professional preparation programmes. Doing so, it is argued, would better equip coaches for the problematic realities of their practice
Chronic Activation of Corticotropin-Releasing Factor Type 2 Receptors Reveals a Key Role for 5-HT1A Receptor Responsiveness in Mediating Behavioral and Serotonergic Responses to Stressful Challenge
BackgroundThe corticotropin-releasing factor type 2 receptor (CRFR2) is suggested to play an important role in aiding recovery from acute stress, but any chronic effects of CRFR2 activation are unknown. CRFR2 in the midbrain raphé nuclei modulate serotonergic activity of this key source of serotonin (5-HT) forebrain innervation.MethodsTransgenic mice overexpressing the highly specific CRFR2 ligand urocortin 3 (UCN3OE) were analyzed for stress-related behaviors and hypothalamic-pituitary-adrenal axis responses. Responses to 5-HT receptor agonist challenge were assessed by local cerebral glucose utilization, while 5-HT and 5-hydroxyindoleacetic acid content were quantified in limbic brain regions.ResultsMice overexpressing urocortin 3 exhibited increased stress-related behaviors under basal conditions and impaired retention of spatial memory compared with control mice. Following acute stress, unlike control mice, they exhibited no further increase in these stress-related behaviors and showed an attenuated adrenocorticotropic hormone response. 5-HT and 5-hydroxyindoleacetic acid content of limbic nuclei were differentially regulated by stress in UCN3OE mice as compared with control mice. Responses to 5-HT type 1A receptor challenge were significantly and specifically reduced in UCN3OE mice. The distribution pattern of local cerebral glucose utilization and 5-HT type 1A receptor messenger RNA expression levels suggested this effect was mediated in the raphé nuclei.ConclusionsChronic activation of CRFR2 promotes an anxiety-like state, yet with attenuated behavioral and hypothalamic-pituitary-adrenal axis responses to stress. This is reminiscent of stress-related atypical psychiatric syndromes such as posttraumatic stress disorder, chronic fatigue, and chronic pain states. This new understanding indicates CRFR2 antagonism as a potential novel therapeutic target for such disorders
Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy
Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo
- âŠ