73 research outputs found
Mechanisms and pathophysiology of SARS-CoV-2 infection of the adipose tissue
Obesity is an independent risk factor for severe COVID-19, yet there remains a lack of consensus on the mechanisms underlying this relationship. A hypothesis that has garnered considerable attention suggests that SARS-CoV-2 disrupts adipose tissue function, either through direct infection or by indirect mechanisms. Indeed, recent reports have begun to shed some light on the important role that the adipose tissue plays during the acute phase of infection, as well as mediating long-term sequelae. In this review, we examine the evidence of extrapulmonary dissemination of SARS-CoV-2 to the adipose tissue. We discuss the mechanisms, acute and long-term implications, and possible management strategies to limit or ameliorate severe disease and long-term metabolic disturbances
Serotonergic Drugs Inhibit Chikungunya Virus Infection at Different Stages of the Cell Entry Pathway
Chikungunya virus (CHIKV) is an important reemerging human pathogen transmitted by mosquitoes. The virus causes an acute febrile illness, chikungunya fever, which is characterized by headache, rash, and debilitating (poly)arthralgia that can reside for months to years after infection. Currently, effective antiviral therapies and vaccines are lacking. Due to the high morbidity and economic burden in the countries affected by CHIKV, there is a strong need for new strategies to inhibit CHIKV replication. The serotonergic drug 5-nonyloxytryptamine (5-NT) was previously identified as a potential host-directed inhibitor for CHIKV infection. In this study, we determined the mechanism of action by which the serotonin receptor agonist 5-NT controls CHIKV infection. Using time-of-addition and entry bypass assays, we found that 5-NT predominantly inhibits CHIKV in the early phases of the replication cycle, at a step prior to RNA translation and genome replication. Intriguingly, however, no effect was seen during virus-cell binding, internalization, membrane fusion and genomic RNA (gRNA) release into the cell cytosol. In addition, we show that the serotonin receptor antagonist methiothepin mesylate (MM) also has antiviral properties toward CHIKV and specifically interferes with the cell entry process and/or membrane fusion. Taken together, pharmacological targeting of 5-HT receptors may represent a potent way to limit viral spread and disease severity. IMPORTANCE The rapid spread of mosquito-borne viral diseases in humans puts a huge economic burden on developing countries. For many of these infections, including those caused by chikungunya virus (CHIKV), there are no specific treatment possibilities to alleviate disease symptoms. Understanding the virus-host interactions that are involved in the viral replication cycle is imperative for the rational design of therapeutic strategies. In this study, we discovered an antiviral compound, elucidated its mechanism of action, and propose serotonergic drugs as potential host-directed antivirals for CHIKV
Chikungunya virus requires an intact microtubule network for efficient viral genome delivery
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus, which has rapidly spread around the globe thereby causing millions of infections. CHIKV is an enveloped virus belonging to the Togaviridae family and enters its host cell primarily via clathrin-mediated endocytosis. Upon internalization, the endocytic vesicle containing the virus particle moves through the cell and delivers the virus to early endosomes where membrane fusion is observed. Thereafter, the nucleocapsid dissociates and the viral RNA is translated into proteins. In this study, we examined the importance of the microtubule network during the early steps of infection and dissected the intracellular trafficking behavior of CHIKV particles during cell entry. We observed two distinct CHIKV intracellular trafficking patterns prior to membrane hemifusion. Whereas half of the CHIKV virions remained static during cell entry and fused in the cell periphery, the other half showed fast-directed microtubule-dependent movement prior to delivery to Rab5-positive early endosomes and predominantly fused in the perinuclear region of the cell. Disruption of the microtubule network reduced the number of infected cells. At these conditions, membrane hemifusion activity was not affected yet fusion was restricted to the cell periphery. Furthermore, follow-up experiments revealed that disruption of the microtubule network impairs the delivery of the viral genome to the cell cytosol. We therefore hypothesize that microtubules may direct the particle to a cellular location that is beneficial for establishing infection or aids in nucleocapsid uncoating
Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro
In recent decades, chikungunya virus (CHIKV) has re-emerged, leading to outbreaks of chikungunya fever in Africa, Asia and Central and South America. The disease is characterized by a rapid onset febrile illness with (poly)arthralgia, myalgia, rashes, headaches and nausea. In 30 to 40% of the cases, CHIKV infection causes persistent (poly)arthralgia, lasting for months or even years after initial infection. Despite the drastic re-emergence and clinical impact there is no vaccine nor antiviral compound available to prevent or control CHIKV infection. Here, we evaluated the antiviral potential of tomatidine towards CHIKV infection. We demonstrate that tomatidine potently inhibits virus particle production of multiple CHIKV strains. Time-of -addition experiments in Huh7 cells revealed that tomatidine acts at a post-entry step of the virus replication cycle. Furthermore, a marked decrease in the number of CHIKV-infected cells was seen, suggesting that tomatidine predominantly acts early in infection yet after virus attachment and cell entry. Antiviral activity was still detected at 24 hours post-infection, indicating that tomatidine controls multiple rounds of CHIKV replication. Solasodine and sarsasapogenin, two structural derivatives of tomatidine, also showed strong albeit less potent antiviral activity towards CHIKV. In conclusion, this study identifies tomatidine as a novel compound to combat CHIKV infection in vitro
Early Events in Chikungunya Virus Infection-From Virus Cell Binding to Membrane Fusion
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research
Regulation of innate immune responses in macrophages differentiated in the presence of vitamin D and infected with dengue virus 2
A dysregulated or exacerbated inflammatory response is thought to be the key driver of the pathogenesis of severe disease caused by the mosquito-borne dengue virus (DENV). Compounds that restrict virus replication and modulate the inflammatory response could thus serve as promising therapeutics mitigating the disease pathogenesis. We and others have previously shown that macrophages, which are important cellular targets for DENV replication, differentiated in the presence of bioactive vitamin D (VitD3) are less permissive to viral replication, and produce lower levels of pro-inflammatory cytokines. Therefore, we here evaluated the extent and kinetics of innate immune responses of DENV-2 infected monocytes differentiated into macrophages in the presence (D(3)-MDMs) or absence of VitD3 (MDMs). We found that D(3)-MDMs expressed lower levels of RIG I, Toll-like receptor (TLR)3, and TLR7, as well as higher levels of SOCS-1 in response to DENV-2 infection. D(3)-MDMs produced lower levels of reactive oxygen species, related to a lower expression of TLR9. Moreover, although VitD3 treatment did not modulate either the expression of IFN-α or IFN-β, higher expression of protein kinase R (PKR) and 2′-5′-oligoadenylate synthetase 1 (OAS1) mRNA were found in D(3)-MDMs. Importantly, the observed effects were independent of reduced infection, highlighting the intrinsic differences between D(3)-MDMs and MDMs. Taken together, our results suggest that differentiation of MDMs in the presence of VitD3 modulates innate immunity in responses to DENV-2 infection
Direct Infection of B Cells by Dengue Virus Modulates B Cell Responses in a Cambodian Pediatric Cohort
Dengue is an acute viral disease caused by dengue virus (DENV), which is transmitted by Aedes mosquitoes. Symptoms of DENV infection range from inapparent to severe and can be life-threatening. DENV replicates in primary immune cells such as dendritic cells and macrophages, which contribute to the dissemination of the virus. Susceptibility of other immune cells such as B cells to direct infection by DENV and their subsequent response to infection is not well defined. In a cohort of 60 Cambodian children, we showed that B cells are susceptible to DENV infection. Moreover, we show that B cells can support viral replication of laboratory adapted and patient-derived DENV strains. B cells were permissive to DENV infection albeit low titers of infectious virions were released in cell supernatants CD300a, a phosphatidylserine receptor, was identified as a potential attachment factor or receptor for entry of DENV into B cells. In spite of expressing Fcγ-receptors, antibody-mediated enhancement of DENV infection was not observed in B cells in an in vitro model. Direct infection by DENV induced proliferation of B cells in dengue patients in vivo and plasmablast/plasma cell formation in vitro. To summarize, our results show that B cells are susceptible to direct infection by DENV via CD300a and the subsequent B cell responses could contribute to dengue pathogenesis
- …