912 research outputs found

    Automatic sensitivity-adjustment for a curvature sensor

    Full text link
    There are different techniques to sense the wavefront phase-distortions due to atmospheric turbulence. Curvature sensors are practical in their sensitivity being adjustable to the prevailing atmospheric conditions. Even at the best sites, the turbulence intensity has been found to vary at times over only a few minutes and regularly over longer periods. Two methods to automatically adjust the sensitivity of a curvature sensor are proposed: First, the defocus distance can be adjusted prior to the adaptive-optics (AO) loop through the acquisition of a long exposure image and can then be kept constant. Secondly, the defocus distance can be changed during the AO loop, based on the voltage values sent to the deformable mirror. We demonstrate that the performance increase - assessed in terms of the image Strehl-ratio - can be significant.Comment: Accepted for publication in the adaptive-optics feature of Applied Optic

    A Nulling Wide Field Imager for Exoplanets Detection and General Astrophysics

    Full text link
    We present a solution to obtain a high-resolution image of a wide field with the central source removed by destructive interference. The wide-field image is created by aperture synthesis with a rotating sparse array of telescopes in space. Nulling of the central source is achieved using a phase-mask coronagraph. The full (u,v) plane coverage delivered by the 60m, six 3-meter telescope array is particularly well-suited for the detection and characterization of exoplanets in the infrared (DARWIN and Terrestrial Planet Finder (TPF) missions) as well as for other generic science observations. Detection (S/N=10) of an Earth-like planet is achieved in less than 10 hours with a 1 micron bandwidth at 10 micron.Comment: 18 pages, 16 figures. Accepted for publication in A&

    Curvature sensors: noise and its propagation

    Full text link
    The signal measured with a curvature sensor is here analyzed. In the outset, we derive the required minimum number of sensing elements at the pupil edges, in dependence on the total number of sensing elements. The distribution of the sensor signal is further characterized in terms of its mean, variance, kurtosis and skewness. It is established that while the approximation in terms of a gaussian distribution is correct down to fairly low photon numbers, much higher numbers are required to obtain meaningful sensor measurements for small wavefront distortions. Finally, we indicate a closed expression for the error propagation factor and for the photon-noise induced Strehl loss.Comment: Accepted for publication in the Adaptive Optics Feature of JOSA

    HARDI: A high angular resolution deployable interferometer for space

    Get PDF
    We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency

    A New Shear Estimator for Weak Lensing Observations

    Full text link
    We present a new shear estimator for weak lensing observations which properly accounts for the effects of a realistic point spread function (PSF). Images of faint galaxies are subject to gravitational shearing followed by smearing with the instrumental and/or atmospheric PSF. We construct a `finite resolution shear operator' which when applied to an observed image has the same effect as a gravitational shear applied prior to smearing. This operator allows one to calibrate essentially any shear estimator. We then specialize to the case of weighted second moment shear estimators. We compute the shear polarizability which gives the response of an individual galaxy's polarization to a gravitational shear. We then compute the response of the population of galaxies, and thereby construct an optimal weighting scheme for combining shear estimates from galaxies of various shapes, luminosities and sizes. We define a figure of merit --- an inverse shear variance per unit solid angle --- which characterizes the quality of image data for shear measurement. The new method is tested with simulated image data. We discuss the correction for anisotropy of the PSF and propose a new technique involving measuring shapes from images which have been convolved with a re-circularizing PSF. We draw attention to a hitherto ignored noise related bias and show how this can be analyzed and corrected for. The analysis here draws heavily on the properties of real PSF's and we include as an appendix a brief review, highlighting those aspects which are relevant for weak lensing.Comment: 39 pages, 9 figure

    The effect of wavefront corrugations on fringe motion in an astronomical interferometer with spatial filters

    Full text link
    Numerical simulations of atmospheric turbulence and AO wavefront correction are performed to investigate the timescale for fringe motion in optical interferometers with spatial filters. These simulations focus especially on partial AO correction, where only a finite number of Zernike modes are compensated. The fringe motion is found to depend strongly on both the aperture diameter and the level of AO correction used. In all of the simulations the coherence timescale for interference fringes is found to decrease dramatically when the Strehl ratio provided by the AO correction is <~30%. For AO systems which give perfect compensation of a limited number of Zernike modes, the aperture size which gives the optimum signal for fringe phase tracking is calculated. For AO systems which provide noisy compensation of Zernike modes (but are perfectly piston-neutral), the noise properties of the AO system determine the coherence timescale of the fringes when the Strehl ratio is <~30%.Comment: 11 pages, submitted to Applied Optics 17 August 2004, accepted 2 June 200

    Detection of arcs in Saturn's F ring during the 1995 Sun ring-plane crossing

    Get PDF
    Observations of the November 1995 Sun crossing of the Saturn's ring-plane made with the 3.6m CFH telescope, using the UHAO adaptive optics system, are presented here. We report the detection of four arcs located in the vicinity of the F ring. They can be seen one day later in HST images. The combination of both data sets gives accurate determinations of their orbits. Semi-major axes range from 140020 km to 140080 km, with a mean of 140060 +- 60 km. This is about 150 km smaller than previous estimates of the F ring radius from Voyager 1 and 2 data, but close to the orbit of another arc observed at the same epoch in HST images.Comment: 8 pages, 3 figures, 1 table, To appear in A&A, for comments : [email protected]

    Stellar scintillation in short exposure regime and atmospheric coherence time evaluation

    Full text link
    Accurately measuring the atmospheric coherence time is still an important problem despite a variety of applicable methods. The Multi-aperture scintillation sensor (MASS) designed for the vertical profiling of optical turbulence, also provides a measurements of coherence time, but its results were found to be biased. Hence there is a need for a more robust method to determine τ0\tau_0. The effect of smoothing the stellar scintillation by a finite exposure of the detector is considered. The short exposure regime is described and its limits are defined. The re-analysis of previous measurements with the MASS is performed in order to test the applicability of this approach in real data processing. It is shown that most of the actual measurements satisfy the criteria of short exposures. The expressions for the mean wind speeds Vˉ2\bar V_2 in the free atmosphere from the measurement of the scintillation indices are derived for this regime. These values provide an estimate of the atmospheric coherence time τ0\tau_0 without the need of empirical calibration. The verification of the method based on real measurements of the resulting τ0\tau_0 are in good agreement with independent methods.Comment: Accepted for publication in Astronomy and Astrophysics, 7 pages, 6 figure

    Phase-Induced Amplitude Apodization of Telescope Pupils for Extrasolar Terrestrial Planet Imaging

    Get PDF
    In this paper, an alternative to the classical pupil apodization techniques (use of an amplitude pupil mask) is proposed. It is shown that an apodized pupil suitable for imaging of Extrasolar planets can be obtained by reflection of an unapodized flat wavefront on 2 mirrors. By carefully choosing the shape of these 2 mirrors, it is possible to obtain a contrast better than 10^{9} at a distance smaller than 2 \lambda/d from the optical axis. Because this technique preserves both the angular resolution and light gathering capabilities of the unapodized pupil, it allows efficient detection of terrestrial extrasolar planets with a 1.5m telescope in the visible.Comment: 9 pages, 9 figures, Accepted for publication in A&A. Postscript file with full-resolution figures can be found at http://www.naoj.org/staff/guyon/publications/PIAA.p

    The close circumstellar environment of Betelgeuse - Adaptive optics spectro-imaging in the near-IR with VLT/NACO

    Get PDF
    Context: Betelgeuse is one the largest stars in the sky in terms of angular diameter. Structures on the stellar photosphere have been detected in the visible and near-infrared as well as a compact molecular environment called the MOLsphere. Mid-infrared observations have revealed the nature of some of the molecules in the MOLsphere, some being the precursor of dust. Aims: Betelgeuse is an excellent candidate to understand the process of mass loss in red supergiants. Using diffraction-limited adaptive optics (AO) in the near-infrared, we probe the photosphere and close environment of Betelgeuse to study the wavelength dependence of its extension, and to search for asymmetries. Methods: We obtained AO images with the VLT/NACO instrument, taking advantage of the "cube" mode of the CONICA camera to record separately a large number of short-exposure frames. This allowed us to adopt a "lucky imaging" approach for the data reduction, and obtain diffraction-limited images over the spectral range 1.04-2.17 μ\mum in 10 narrow-band filters. Results: In all filters, the photosphere of Betelgeuse appears partly resolved. We identify an asymmetric envelope around the star, with in particular a relatively bright "plume" extending in the southwestern quadrant up to a radius of approximately six times the photosphere. The CN molecule provides an excellent match to the 1.09 mic bandhead in absorption in front of the stellar photosphere, but the emission spectrum of the plume is more difficult to interpret. Conclusions: Our AO images show that the envelope surrounding Betelgeuse has a complex and irregular structure. We propose that the southwestern plume is linked either to the presence of a convective hot spot on the photosphere, or to the rotation of the star.Comment: 12 pages. Astronomy and Astrophysics (2009) in pres
    corecore