6 research outputs found
The 2014 ALMA Long Baseline Campaign: An Overview
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy
TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis
Most patients with colorectal cancer die as a result of the disease spreading to other organs. However, no prevalent mutations have been associated with metastatic colorectal cancers1,2. Instead, particular features of the tumour microenvironment, such as lack of T-cell infiltration3, low type 1 T-helper cell (TH1) activity and reduced immune cytotoxicity2 or increased TGFβ levels4 predict adverse outcomes in patients with colorectal cancer. Here we analyse the interplay between genetic alterations and the tumour microenvironment by crossing mice bearing conditional alleles of four main colorectal cancer mutations in intestinal stem cells. Quadruple-mutant mice developed metastatic intestinal tumours that display key hallmarks of human microsatellite-stable colorectal cancers, including low mutational burden5, T-cell exclusion3 and TGFβ-activated stroma4,6,7. Inhibition of the PD-1–PD-L1 immune checkpoint provoked a limited response in this model system. By contrast, inhibition of TGFβ unleashed a potent and enduring cytotoxic T-cell response against tumour cells that prevented metastasis. In mice with progressive liver metastatic disease, blockade of TGFβ signalling rendered tumours susceptible to anti-PD-1–PD-L1 therapy. Our data show that increased TGFβ in the tumour microenvironment represents a primary mechanism of immune evasion that promotes T-cell exclusion and blocks acquisition of the TH1-effector phenotype. Immunotherapies directed against TGFβ signalling may therefore have broad applications in treating patients with advanced colorectal cancer
Luminal breast cancer: from biology to treatment.
Oestrogen receptor (ER)-positive--or luminal--tumours represent around two-thirds of all breast cancers. Luminal breast cancer is a highly heterogeneous disease comprising different histologies, gene-expression profiles and mutational patterns, with very varied clinical courses and responses to systemic treatment. Despite adjuvant endocrine therapy and chemotherapy treatment for patients at high risk of relapse, both early and late relapses still occur, a fact that highlights the unmet medical needs of these patients. Ongoing research aims to identify those patients who can be spared adjuvant chemotherapy and who will benefit from extended adjuvant hormone therapy. This research also aims to explore the role of adjuvant bisphosphonates, to interrogate new agents for targeting minimal residual disease, and to address endocrine resistance. Data from next-generation sequencing studies have given us new insight into the biology of luminal breast cancer and, together with advances in preclinical models and the availability of newer targeted agents, have led to the testing of rationally chosen combination treatments in clinical trials. However, a major challenge will be to make sense of the large amount of patient genomic data that is becoming increasingly available. This analysis will be critical to our understanding how intertumour and intratumour heterogeneity can influence treatment response and resistance.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: re.jinfo:eu-repo/semantics/publishe