5 research outputs found
MultiCellDS : a community-developed standard for curating microenvironment-dependent multicellular data
Exchanging and understanding scientific data and their context represents a significant barrier to advancing research, especially with respect to information siloing. Maintaining information provenance and providing data curation and quality control help overcome common concerns and barriers to the effective sharing of scientific data. To address these problems in and the unique challenges of multicellular systems, we assembled a panel composed of investigators from several disciplines to create the MultiCellular Data Standard (MultiCellDS) with a use-case driven development process. The standard includes (1) digital cell lines, which are analogous to traditional biological cell lines, to record metadata, cellular microenvironment, and cellular phenotype variables of a biological cell line, (2) digital snapshots to consistently record simulation, experimental, and clinical data for multicellular systems, and (3) collections that can logically group digital cell lines and snapshots. We have created a MultiCellular DataBase (MultiCellDB) to store digital snapshots and the 200+ digital cell lines we have generated. MultiCellDS, by having a fixed standard, enables discoverability, extensibility, maintainability, searchability, and sustainability of data, creating biological applicability and clinical utility that permits us to identify upcoming challenges to uplift biology and strategies and therapies for improving human health
MultiCellDS: a standard and a community for sharing multicellular data
Cell biology is increasingly focused on cellular heterogeneity and multicellular systems. To make the fullest use of experimental, clinical, and computational efforts, we need standardized data formats, community-curated "public data libraries", and tools to combine and analyze shared data. To address these needs, our multidisciplinary community created MultiCellDS (MultiCellular Data Standard): an extensible standard, a library of digital cell lines and tissue snapshots, and support software. With the help of experimentalists, clinicians, modelers, and data and library scientists, we can grow this seed into a community-owned ecosystem of shared data and tools, to the benefit of basic science, engineering, and human health
MultiCellDS: a community-developed standard for curating microenvironment-dependent multicellular data
Exchanging and understanding scientific data and their context represents a significant barrier to advancing research, especially with respect to information siloing. Maintaining information provenance and providing data curation and quality control help overcome common concerns and barriers to the effective sharing of scientific data. To address these problems in and the unique challenges of multicellular systems, we assembled a panel composed of investigators from several disciplines to create the MultiCellular Data Standard (MultiCellDS) with a use-case driven development process. The standard includes (1) digital cell lines, which are analogous to traditional biological cell lines, to record metadata, cellular microenvironment, and cellular phenotype variables of a biological cell line, (2) digital snapshots to consistently record simulation, experimental, and clinical data for multicellular systems, and (3) collections that can logically group digital cell lines and snapshots. We have created a MultiCellular DataBase (MultiCellDB) to store digital snapshots and the 200+ digital cell lines we have generated. MultiCellDS, by having a fixed standard, enables discoverability, extensibility, maintainability, searchability, and sustainability of data, creating biological applicability and clinical utility that permits us to identify upcoming challenges to uplift biology and strategies and therapies for improving human health
MultiCellDS: a standard and a community for sharing multicellular data
Cell biology is increasingly focused on cellular heterogeneity and multicellular systems. To make the fullest use of experimental, clinical, and computational efforts, we need standardized data formats, community-curated "public data libraries", and tools to combine and analyze shared data. To address these needs, our multidisciplinary community created MultiCellDS (MultiCellular Data Standard): an extensible standard, a library of digital cell lines and tissue snapshots, and support software. With the help of experimentalists, clinicians, modelers, and data and library scientists, we can grow this seed into a community-owned ecosystem of shared data and tools, to the benefit of basic science, engineering, and human health
Mikromekaaninen oskillaattori
Tässä diplomityössä tutustuttiin kapasitiivisesti kytketyllä mikromekaanisella resonaattorilla stabiloidun sähkömekaanisen oskillaattorin teoriaan: resonaattorin mekaniikkaan ja vahvistimen elektroniikkaan.
Esitetyn teorian pohjalta suunniteltiin ja rakennettiin sähkömekaaninen 500 kHz:n Pierce-oskillaattori.
Prototyypin toiminta demonstroitiin mittauksin.
Prototyypin mittauksissa todennettiin mikromekaanisen oskillaattorin värähtelytaajuuden ja -amplitudin riippuvuus resonaattorin biasjännitteestä; mittaustulokset olivat ennusteiden mukaiset.
Oskillaattorin värähtelytarkkuutta kuvaava vaihekohina mitattiin tarkoitukseen suunnitellulla laitteistolla.
Mitattu vaihekohina oli -123dBc@SkHz.
Prototyypissä käytettiin palkkiresonaattoria, jonka epälineaarisuuden seurauksena oskillaattorin ulostulo oli säröytynyt.
Työssä pohdittiin myös fysikaalisia rajoja palkkiresonaattoriin perustuvan mikromekaanisen oskillaattorin suorituskyvylle