1,550 research outputs found

    Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation

    Get PDF
    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. We demonstrate a sensitivity of 100pG/Hz(RMS)100\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)} in a 3.5 cm diameter, paraffin coated cell. Based on detection at the photon shot-noise limit, we project a sensitivity of 20pG/Hz(RMS)20\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)}.Comment: 6 pages, 6 figure

    Unusually large polarizabilities and "new" atomic states in Ba

    Full text link
    Electric polarizabilities of four low-J even-parity states and three low-J odd-parity states of atomic barium in the range 35,60035,600 to $36,000\ cmcm^{-1}areinvestigated.Thestatesofinterestareexcited(inanatomicbeam)viaanintermediateoddparitystatewithasequenceoftwolaserpulses.TheoddparitystatescanbeexcitedduetotheStarkinducedmixingwithevenparitystates.Thepolarizabilitiesaremeasuredviadirectspectroscopyonthesecondstagetransition.Severalstateshavetensorandscalarpolarizabilitiesthatexceedthevaluesthatmightbeexpectedfromtheknownenergylevelsofbariumbymorethantwoordersofmagnitude.TwooftheStarkinducedtransitionscannotbeidentifiedfromtheknownenergyspectrumofbarium.Theobservationssuggesttheexistenceofasyetunidentifiedoddparityenergystates,whoseenergiesandangularmomentaaredeterminedinthepresentexperiment.Atentativeidentificationofthesestatesas[Xe] are investigated. The states of interest are excited (in an atomic beam) via an intermediate odd-parity state with a sequence of two laser pulses. The odd-parity states can be excited due to the Stark-induced mixing with even-parity states. The polarizabilities are measured via direct spectroscopy on the second-stage transition. Several states have tensor and scalar polarizabilities that exceed the values that might be expected from the known energy levels of barium by more than two orders of magnitude. Two of the Stark-induced transitions cannot be identified from the known energy spectrum of barium. The observations suggest the existence of as yet unidentified odd-parity energy states, whose energies and angular momenta are determined in the present experiment. A tentative identification of these states as [Xe]6s8p ^3P_{0,2}$ is suggested.Comment: 29 pages, 12 figure

    APC Nb3_3Sn superconductors based on internal oxidation of Nb-Ta-Hf alloys

    Full text link
    In the last few years, a new type of Nb3_3Sn superconducting composite, containing a high density of artificial pinning centers (APC) generated via an internal oxidation approach, has demonstrated a significantly superior performance relative to present, state-of-the-art commercial Nb3_3Sn conductors. This was achieved via the internal oxidation of Nb-4at.%Ta-1at.%Zr alloy. On the other hand, our recent studies have shown that internal oxidation of Nb-Ta-Hf alloys can also lead to dramatic improvements in Nb3_3Sn performance. In this work we follow up this latter approach, fabricating a 61-stack APC wire based on the internal oxidation of Nb-4at.%Ta-1at.%Hf alloy, and compare its critical current density (Jc) and irreversibility field (Birr) with APC wires made using Nb-4at.%Ta-1at.%Zr. A second goal of this work was to improve the filamentary design of APC wires in order to improve their wire quality and electromagnetic stability. Our new modifications have led to significantly improved RRR and stability in the conductors, while still keeping non-Cu Jc at or above the FCC Jc specification. Further improvement via optimization of the wire recipe and design is ongoing. Finally, additional work needed to make APC conductors ready for applications in magnets is discussed.Comment: Matches published versio

    Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range

    Full text link
    Recent work investigating resonant nonlinear magneto-optical rotation (NMOR) related to long-lived (\tau\ts{rel} \sim 1 {\rm s}) ground-state atomic coherences has demonstrated potential magnetometric sensitivities exceeding 1011G/Hz10^{-11} {\rm G/\sqrt{Hz}} for small (1μG\lesssim 1 {\rm \mu G}) magnetic fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is studied in the regime where the longitudinal magnetic field is in the geophysical range (500mG\sim 500 {\rm mG}), of particular interest for many applications. In this regime a splitting of the FM NMOR resonance due to the nonlinear Zeeman effect is observed. At sufficiently high light intensities, there is also a splitting of the FM NMOR resonances due to ac Stark shifts induced by the optical field, as well as evidence of alignment-to-orientation conversion type processes. The consequences of these effects for FM-NMOR-based atomic magnetometry in the geophysical field range are considered.Comment: 8 pages, 8 figure

    Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer.

    Get PDF
    PURPOSE: Angiogenesis and vascular endothelial growth factor (VEGF) expression are associated with a poor outcome in bladder cancer. To understand more about the mechanisms, we studied the role of delta-like 4 (DLL4), an endothelial-specific ligand of the Notch signaling pathway, in bladder cancer angiogenesis. EXPERIMENTAL DESIGN: The expression of DLL4, CD34, and VEGF were studied in a cohort of 60 bladder tumors and 10 normal samples using quantitative PCR. In situ hybridization was used to study the pattern of DLL4 expression in 22 tumor and 9 normal samples. Serial sections were also stained for CD34 and alpha-smooth muscle actin (alpha-SMA) using conventional immunohistochemistry. RESULTS: The expression of DLL4 was significantly up-regulated in superficial (P < 0.01) and invasive (P < 0.05) bladder cancers. DLL4 expression significantly correlated with CD34 (P < 0.001) and VEGF (P < 0.001) expression. The in situ hybridization studies showed that DLL4 was highly expressed within bladder tumor vasculature. Additionally, DLL4 expression significantly correlated with vessel maturation as judged by periendothelial cell expression of alpha-SMA, 98.7% of DLL4-positive tumor vessels coexpressed alpha-SMA, compared with 64.5% of DLL4-negative tumor vessels (P < 0.001). High DLL4 expression may have prognostic value in superficial and invasive bladder. CONCLUSION: DLL4 expression is associated with vascular differentiation in bladder cancer; thus, targeting DLL4 may be a novel antiangiogenic therapy

    A Study of the Scintillation Induced by Alpha Particles and Gamma Rays in Liquid Xenon in an Electric Field

    Full text link
    Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200 keV, the number of scintillation photons was found to decrease by 64+/-2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields.Comment: 15 pages, 12 figures, accepted by Nuclear Instruments and Methods in Physics Research

    Vacuum Squeezing in Atomic Media via Self-Rotation

    Full text link
    When linearly polarized light propagates through a medium in which elliptically polarized light would undergo self-rotation, squeezed vacuum can appear in the orthogonal polarization. A simple relationship between self-rotation and the degree of vacuum squeezing is developed. Taking into account absorption, we find the optimum conditions for squeezing in any medium that can produce self-rotation. We then find analytic expressions for the amount of vacuum squeezing produced by an atomic vapor when light is near-resonant with a transition between various low-angular-momentum states. Finally, we consider a gas of multi-level Rb atoms, and analyze squeezing for light tuned near the D-lines under realistic conditions.Comment: 10 pages, 6 figures; Submitted to PR

    Measurement of Dielectric Suppression of Bremsstrahlung

    Full text link
    In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy photons in a medium is suppressed because of interactions between the produced photon and the electrons in the medium. This suppression occurs because the emission takes place over on a long distance scale, allowing for destructive interference between different instantaneous photon emission amplitudes. We present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data shows that dielectric suppression occurs at the predicted level, reducing the cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e
    corecore