159 research outputs found

    Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways

    Get PDF
    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair

    A pre-intervention study of malaria vector abundance in Rio Muni, Equatorial Guinea: Their role in malaria transmission and the incidence of insecticide resistance alleles

    Get PDF
    BACKGROUND: Following the success of the malaria control intervention on the island of Bioko, malaria control by the use of indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLITN) was extended to Rio Muni, on the mainland part of Equatorial Guinea. This manuscript reports on the malaria vectors present and the incidence of insecticide resistant alleles prior to the onset of the programme. METHODS: Anopheles mosquitoes were captured daily using window traps at 30 sentinel sites in Rio Muni, from December 2006 to July 2007. The mosquitoes were identified to species and their sporozoite rates, knockdown resistance (kdr) and acetylcholinesterase (AChE) sensitivity measured, to define the role of vector species in malaria transmission and their potential susceptibility to insecticides. RESULTS: A total of 6,162 Anopheles mosquitoes were collected of which 4,808 were morphologically identified as Anopheles gambiae s.l., 120 Anopheles funestus, 1,069 Anopheles moucheti, and 165 Anopheles nili s.l.. Both M and S molecular forms of Anopheles gambiae s.s. and Anopheles melas were identified. Anopheles ovengensis and Anopheles carnevalei were the only two members of the An. nili group to be identified. Using the species-specific sporozoite rates and the average number of mosquitoes per night, the number of infective mosquitoes per trap per 100 nights for each species complex was calculated as a measure of transmission risk. Both kdr-w and kdr-e alleles were present in the S-form of An. gambiae s.s. (59% and 19% respectively) and at much lower frequencies in the M-form (9.7% and 1.8% respectively). The kdr-w and kdr-e alleles co-occurred in 103 S-form and 1 M-form specimens. No insensitive AChE was detected. CONCLUSION: Anopheles gambiae s.s, a member of the Anopheles gambiae complex was shown to be the major vector in Rio Muni with the other three groups playing a relatively minor role in transmission. The demonstration of a high frequency of kdr alleles in mosquito populations before the onset of a malaria control programme shows that continuous entomological surveillance including resistance monitoring will be of critical importance to ensure the chosen insecticide remains effective

    The pharmaceutical solvent N-methyl-2-pyrollidone (NMP) attenuates inflammation through Krüppel-like factor 2 activation to reduce atherogenesis.

    Get PDF
    N-methyl-2-pyrrolidone (NMP) is a versatile water-miscible polar aprotic solvent. It is used as a drug solubilizer and penetration enhancer in human and animal, yet its bioactivity properties remain elusive. Here, we report that NMP is a bioactive anti-inflammatory compound well tolerated in vivo, that shows efficacy in reducing disease in a mouse model of atherosclerosis. Mechanistically, NMP increases the expression of the transcription factor Kruppel-like factor 2 (KLF2). Monocytes and endothelial cells treated with NMP express increased levels of KLF2, produce less pro-inflammatory cytokines and adhesion molecules. We found that NMP attenuates monocyte adhesion to endothelial cells inflamed with tumor necrosis factor alpha (TNF-α) by reducing expression of adhesion molecules. We further show using KLF2 shRNA that the inhibitory effect of NMP on endothelial inflammation and subsequent monocyte adhesion is KLF2 dependent. Enhancing KLF2 expression and activity improves endothelial function, controls multiple genes critical for inflammation, and prevents atherosclerosis. Our findings demonstrate a consistent effect of NMP upon KLF2 activation and inflammation, biological processes central to atherogenesis. Our data suggest that inclusion of bioactive solvent NMP in pharmaceutical compositions to treat inflammatory disorders might be beneficial and safe, in particular to treat diseases of the vascular system, such as atherosclerosis

    Nutritional and socio-economic factors associated with Plasmodium falciparum infection in children from Equatorial Guinea: results from a nationally representative survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria has traditionally been a major endemic disease in Equatorial Guinea. Although parasitaemia prevalence on the insular region has been substantially reduced by vector control in the past few years, the prevalence in the mainland remains over 50% in children younger than five years. The aim of this study is to investigate the risk factors for parasitaemia and treatment seeking behaviour for febrile illness at country level, in order to provide evidence that will reinforce the EG National Malaria Control Programme.</p> <p>Methods</p> <p>The study was a cross-sectional survey of children 0 to 5 years old, using a multistaged, stratified, cluster-selected sample at the national level. It included a socio-demographic, health and dietary questionnaires, anthropometric measurements, and thick and thin blood smears to determine the <it>Plasmodium </it>infection. A multivariate logistic regression model was used to determine risk factors for parasitaemia, taking into account the cluster design.</p> <p>Results</p> <p>The overall prevalence of parasitemia was 50.9%; it was higher in rural (58.8%) compared to urban areas (44.0%, p = 0.06). Age was positively associated with parasitemia (p < 0.0001). In rural areas, risk factors included longer distance to health facilities (p = 0.01) and a low proportion of households with access to protected water in the community (p = 0.02). Having had an episode of cough in the 15 days prior to the survey was inversely related to parasitemia (p = 0.04). In urban areas, the risk factors were stunting (p = 0.005), not having taken colostrum (p = 0.01), and that someone in the household slept under a bed net (p = 0.002); maternal antimalarial medication intake during pregnancy (p = 0.003) and the household socio-economic status (p = 0.0002) were negatively associated with parasitemia. Only 55% of children with fever were taken outside their homes for care, and treatment seeking behaviour differed substantially between rural and urban populations.</p> <p>Conclusion</p> <p>Results suggest that a national programme to fight malaria in Equatorial Guinea should take into account the differences between rural and urban communities in relation to risk factors for parasitaemia and treatment seeking behaviour, integrate nutrition programmes, incorporate campaigns on the importance of early treatment, and target appropriately for bed nets to reach the under-fives.</p

    Streptococcus intermedius causing infective endocarditis and abscesses: a report of three cases and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus intermedius </it>is a member of the Streptococcus anginosus group. Clinical disease with <it>S. intermedius </it>is characterized by abscess formation and rarely endocarditis. Identification of <it>Streptococcus intermedius </it>is difficult, leading to the development of molecular methods to more accurately identify and characterize this organism.</p> <p>Case presentation</p> <p>Over a period of 6 months we encountered three cases of invasive <it>Streptococcus intermedius </it>infection presenting as hepatic abscesses, brain abscess, and endocarditis. We confirmed our microbiologic diagnosis through 16S sequencing and found a common virulence gene in each case.</p> <p>Conclusion</p> <p>Our report illustrates three different clinical manifestations due to <it>Streptococcus intermedius </it>infection that can be encountered in healthy individuals in a community hospital setting. To our knowledge, this is the first case of <it>Streptococcus intermedius </it>endocarditis confirmed by 16S sequencing analysis. The use of molecular methods may allow a better understanding of the epidemiology and pathogenesis of this organism.</p

    p38γ is essential for cell cycle progression and liver tumorigenesis

    Get PDF
    The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)–cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease

    A Simple Stochastic Model with Environmental Transmission Explains Multi-Year Periodicity in Outbreaks of Avian Flu

    Get PDF
    Avian influenza virus reveals persistent and recurrent outbreaks in North American wild waterfowl, and exhibits major outbreaks at 2–8 years intervals in duck populations. The standard susceptible-infected- recovered (SIR) framework, which includes seasonal migration and reproduction, but lacks environmental transmission, is unable to reproduce the multi-periodic patterns of avian influenza epidemics. In this paper, we argue that a fully stochastic theory based on environmental transmission provides a simple, plausible explanation for the phenomenon of multi-year periodic outbreaks of avian flu. Our theory predicts complex fluctuations with a dominant period of 2 to 8 years which essentially depends on the intensity of environmental transmission. A wavelet analysis of the observed data supports this prediction. Furthermore, using master equations and van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how the outbreak period varies with the environmental transmission

    The importance of Real-Life research in Respiratory Medicine: Manifesto of the Respiratory Effectiveness Group:Endorsed by the International Primary Care Respiratory Group and the World Allergy Organization

    Get PDF
    status: publishe

    Predictors of long-term outcome following high-dose chemotherapy in high-risk primary breast cancer

    Get PDF
    We report on a predictive model of long-term outcome in 114 high-risk breast cancer patients treated with high-dose chemotherapy between 1989 and 1994. Paraffin-blocks from 90 of the 114 primaries were assessed for the presence of five risk factors: grade, mitotic index, protein expression of p53, HER2/neu, and oestrogen/progesterone receptor status; we could analyse the effect of risk factors in 84 of these 90 tumours. Seven-year relapse-free and overall survival was 58% (95% confidence interval 44–74%) and 82% (95% confidence interval 71–94%) vs 33% (95% confidence interval 21–52%) and 41% (95% confidence interval 28–60%) for patients whose primary tumours displayed ⩾3 risk factors vs patients with ⩽2 risk factors. For the entire group of 168 high-risk breast cancer patients, inflammatory stage IIIB disease and involved post-mastectomy margins were associated with decreased relapse-free survival and overall survival; patients treated with non-doxorubicin containing standard adjuvant therapy experienced worse overall survival (RR, 2.08; 95% confidence interval 1.04 to 4.16; P=0.04), while adjuvant tamoxifen improved overall survival (RR, 0.65; 95% confidence interval 0.41–1.01; P=0.054). Future trial designs and patient selection for studies specific for high-risk breast cancer patients should include appropriate prognostic models. Validation of such models could come from recently completed randomised, prospective trials

    Plant-mediated effects on mosquito capacity to transmit human malaria

    Get PDF
    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities
    corecore