15,520 research outputs found
Dynamical Evolution of an Unstable Gravastar with Zero Mass
Using the conventional gravastar model, that is, an object constituted by two
components where one of them is a massive infinitely thin shell and the other
one is a de Sitter interior spacetime, we physically interpret a solution
characterized by a zero Schwarzschild mass. No stable gravastar is formed and
it collapses without forming an event horizon, originating what we call a
massive non-gravitational object. The most surprise here is that the collapse
occurs with an exterior de Sitter vacuum spacetime. This creates an object
which does not interact gravitationally with an outside test particle and it
may evolve to a point-like topological defect.Comment: 8 pages, 10 figures, to appear in Astrophysics and Space Scienc
Dressing a Naked Singularity: an Example
Considering the evolution of a perfect fluid with self-similarity of the
second kind, we have found that an initial naked singularity can be trapped by
an event horizon due to collapsing matter. The fluid moves along time-like
geodesics with a self-similar parameter . Since the metric
obtained is not asymptotically flat, we match the spacetime of the fluid with a
Schwarzschild spacetime. All the energy conditions are fulfilled until the
naked singularity.Comment: 14 pages, 1 figure. This version corrects an error in the calculus of
the pressure and in the conclusion
Non-Associativity in the Clifford Bundle on the Parallelizable Torsion 7-Sphere
In this paper we discuss generalized properties of non-associativity in
Clifford bundles on the 7-sphere S7. Novel and prominent properties inherited
from the non-associative structure of the Clifford bundle on S7 are
demonstrated. They naturally lead to general transformations of the spinor
fields on S7 and have dramatic consequences for the associated Kac-Moody
current algebras. All additional properties concerning the non-associative
structure in the Clifford bundle on S7 are considered. We further discuss and
explore their applications.Comment: 16 page
- …