5 research outputs found

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy

    No full text
    Mutations in CACNA1A, which encodes the principal subunit of the P/Q calcium channel, underlie episodic ataxia type 2 (EA2). In addition, some patients with episodic ataxia complicated by epilepsy have been shown to harbour CACNA1A mutations, raising the possibility that P/Q channel dysfunction may be linked to human epilepsy. We undertook a review of all published CACNA1A EA2 cases and this showed that 7% have epilepsy – representing a sevenfold increased epilepsy risk compared to the background population risk (P < 0.001). We also studied a series of 17 individuals with episodic ataxia accompanied by epilepsy and/or clearly epileptiform electroencephalograms (EEGs). We screened the entire coding region of CACNA1A for point mutations and rearrangements to determine if genetic variation in the gene is associated with the epilepsy phenotype, and measured the functional impact of all missense variations on heterologously expressed P/Q channels. We identified two large scale deletions and two new missense mutations in CACNA1A. When expressed, L621R had little detectable effect on P/Q channel function, while the other missense change, G540R, caused an approximately 30% reduction in current density. In nine patients we also identified the previously reported non-synonymous coding variants (E921D and E993V) which also resulted in impairment of P/Q channel function. Taken together, 12 of the 17 patients have genetic changes which decrease P/Q channel function. We conclude that variants in the coding region of CACNA1A that confer a loss of P/Q-type channel function are associated with episodic ataxia and epilepsy. Our data suggest that functional stratification of all variants, including common polymorphisms, rare variants and novel mutations, may provide new insights into the mechanisms of channelopathies
    corecore