2,048 research outputs found

    Incidence of qq-statistics in rank distributions

    Get PDF
    We show that size-rank distributions with power-law decay (often only over a limited extent) observed in a vast number of instances in a widespread family of systems obey Tsallis statistics. The theoretical framework for these distributions is analogous to that of a nonlinear iterated map near a tangent bifurcation for which the Lyapunov exponent is negligible or vanishes. The relevant statistical-mechanical expressions associated with these distributions are derived from a maximum entropy principle with the use of two different constraints, and the resulting duality of entropy indexes is seen to portray physically relevant information. While the value of the index α\alpha fixes the distribution's power-law exponent, that for the dual index 2α2-\alpha ensures the extensivity of the deformed entropy.Comment: Santa Fe Institute working paper: http://www.santafe.edu/media/workingpapers/14-07-024.pdf. see: http://www.pnas.org/content/early/2014/09/03/1412093111.full.pdf+htm

    Parallels between the dynamics at the noise-perturbed onset of chaos in logistic maps and the dynamics of glass formation

    Full text link
    We develop the characterization of the dynamics at the noise-perturbed edge of chaos in logistic maps in terms of the quantities normally used to describe glassy properties in structural glass formers. Following the recognition [Phys. Lett. \textbf{A 328}, 467 (2004)] that the dynamics at this critical attractor exhibits analogies with that observed in thermal systems close to vitrification, we determine the modifications that take place with decreasing noise amplitude in ensemble and time averaged correlations and in diffusivity. We corroborate explicitly the occurrence of two-step relaxation, aging with its characteristic scaling property, and subdiffusion and arrest for this system. We also discuss features that appear to be specific of the map.Comment: Revised version with substantial improvements. Revtex, 8 pages, 11 figure

    Dynamics towards the Feigenbaum attractor

    Full text link
    We expose at a previously unknown level of detail the features of the dynamics of trajectories that either evolve towards the Feigenbaum attractor or are captured by its matching repellor. Amongst these features are the following: i) The set of preimages of the attractor and of the repellor are embedded (dense) into each other. ii) The preimage layout is obtained as the limiting form of the rank structure of the fractal boundaries between attractor and repellor positions for the family of supercycle attractors. iii) The joint set of preimages for each case form an infinite number of families of well-defined phase-space gaps in the attractor or in the repellor. iv) The gaps in each of these families can be ordered with decreasing width in accord to power laws and are seen to appear sequentially in the dynamics generated by uniform distributions of initial conditions. v) The power law with log-periodic modulation associated to the rate of approach of trajectories towards the attractor (and to the repellor) is explained in terms of the progression of gap formation. vi) The relationship between the law of rate of convergence to the attractor and the inexhaustible hierarchy feature of the preimage structure is elucidated.Comment: 8 pages, 12 figure

    Electromagnetic transition strengths in soft deformed nuclei

    Full text link
    Spectroscopic observables such as electromagnetic transitions strengths can be related to the properties of the intrinsic mean-field wave function when the latter are strongly deformed, but the standard rotational formulas break down when the deformation decreases. Nevertheless there is a well-defined, non-zero, spherical limit that can be evaluated in terms of overlaps of mean-field intrinsic deformed wave functions. We examine the transition between the spherical limit and strongly deformed one for a range of nuclei comparing the two limiting formulas with exact projection results. We find a simple criterion for the validity of the rotational formula depending on , the mean square fluctuation in the angular momentum of the intrinsic state. We also propose an interpolation formula which describes the transition strengths over the entire range of deformations, reducing to the two simple expressions in the appropriate limits.Comment: 16 pages, 5 figures, supplemental material include

    Quasiparticle light elements and quantum condensates in nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the surrounding medium, such as self-energy and Pauli blocking. Similar to the single-baryon states (free neutrons and protons), the light elements (2A42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P;T,nn,np)E_{A,\nu}(P; T, n_n,n_p) that depend on the center of mass momentum P\vec P, the temperature TT, and the total densities nn,npn_n,n_p of neutrons and protons, respectively. We consider the composition and thermodynamic properties of nuclear matter at low densities. At low temperatures, quartetting is expected to occur. Consequences for different physical properties of nuclear matter and finite nuclei are discussed.Comment: 5 pages, 1 figure, 2 table

    Rheology of a sonofluidized granular packing

    Full text link
    We report experimental measurements on the rheology of a dry granular material under a weak level of vibration generated by sound injection. First, we measure the drag force exerted on a wire moving in the bulk. We show that when the driving vibration energy is increased, the effective rheology changes drastically: going from a non-linear dynamical friction behavior - weakly increasing with the velocity- up to a linear force-velocity regime. We present a simple heuristic model to account for the vanishing of the stress dynamical threshold at a finite vibration intensity and the onset of a linear force-velocity behavior. Second, we measure the drag force on spherical intruders when the dragging velocity, the vibration energy, and the diameters are varied. We evidence a so-called ''geometrical hardening'' effect for smaller size intruders and a logarithmic hardening effect for the velocity dependence. We show that this last effect is only weakly dependent on the vibration intensity.Comment: Accepted to be published in EPJE. v3: Includes changes suggested by referee
    corecore